Suppr超能文献

利用石墨烯泡沫的三维结构诱导分级聚酰亚胺纳米结构的优越阻尼性能。

Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures.

机构信息

Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, 33174, USA.

出版信息

Small. 2017 Mar;13(10). doi: 10.1002/smll.201603473. Epub 2016 Dec 27.

Abstract

Graphene foam-based hierarchical polyimide composites with nanoengineered interface are fabricated in this study. Damping behavior of graphene foam is probed for the first time. Multiscale mechanisms contribute to highly impressive damping in graphene foam. Rippling, spring-like interlayer van der Waals interactions and flexing of graphene foam branches are believed to be responsible for damping at the intrinsic, interlayer and anatomical scales, respectively. Merely 1.5 wt% graphene foam addition to the polyimide matrix leads to as high as ≈300% improvement in loss tangent. Graphene nanoplatelets are employed to improve polymer-foam interfacial adhesion by arresting polymer shrinkage during imidization and π-π interactions between nanoplatelets and foam walls. As a result, damping behavior is further improved due to effective stress transfer from the polymer matrix to the foam. Thermo-oxidative stability of these nanocomposites is investigated by exposing the specimens to glass transition temperature of the polyimide (≈400 °C). The composites are found to retain their damping characteristics even after being subjected to such extreme temperature, attesting their suitability in high temperature structural applications. Their unique hierarchical nanostructure provides colossal opportunity to engineer and program material properties.

摘要

本研究制备了基于具有纳米工程界面的石墨烯泡沫的分层聚酰亚胺复合材料。首次探究了石墨烯泡沫的阻尼行为。多尺度机制有助于在石墨烯泡沫中实现令人印象深刻的高阻尼。涟漪、层间类似弹簧的范德华相互作用以及石墨烯泡沫支链的弯曲被认为分别负责本征、层间和解剖学尺度的阻尼。仅向聚酰亚胺基体中添加 1.5wt%的石墨烯泡沫,损耗因子就提高了约 300%。石墨烯纳米片通过在酰亚胺化过程中阻止聚合物收缩和纳米片与泡沫壁之间的π-π相互作用,来提高聚合物-泡沫界面的附着力。结果,由于聚合物基体向泡沫的有效应力传递,阻尼性能得到进一步提高。通过将样品暴露在聚酰亚胺的玻璃化转变温度(约 400°C)下,研究了这些纳米复合材料的热氧化稳定性。即使在经受如此极端的温度后,这些复合材料仍保留其阻尼特性,证明它们适用于高温结构应用。它们独特的分层纳米结构为设计和编程材料性能提供了巨大的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验