Plasma Forming Laboratory, Department of Mechanical and Materials Engineering, Florida International University , Miami, Florida 33174, United States.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39717-39727. doi: 10.1021/acsami.7b14078. Epub 2017 Nov 2.
Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.
本研究开发了基于三维(3D)大孔石墨烯泡沫的多功能环氧复合材料。采用简便的浸涂和模具铸造技术来设计具有可调节热、机械和电性能的微观结构。这些加工技术允许毛细作用引起的石墨烯泡沫支腿的平衡填充,从而在最小分离的情况下形成环氧/石墨烯界面。添加 2wt%的石墨烯泡沫将环氧的玻璃化转变温度从 106°C 提高到 162°C,提高了聚合物复合材料的热稳定性。石墨烯泡沫有助于承载,仅在环氧基体中添加 0.13wt%的石墨烯泡沫,即可将复合材料的极限拉伸强度提高 12%。数字图像相关(DIC)分析表明,石墨烯泡沫单元限制和限制了聚合物基质的变形,从而提高了复合材料的承载能力。添加 0.6wt%的石墨烯泡沫也可使纯环氧的弯曲强度提高 10%。发现石墨烯分支的 3D 网络抑制和偏转裂纹,阻止机械失效。复合材料的动态力学分析(DMA)表明它们具有减振能力,因为损耗因子(tanδ)从纯环氧的 0.1 跃升至约 2wt%石墨烯泡沫-环氧复合材料的 0.24。石墨烯泡沫支腿还为电子转移提供了无缝通道,从而使电导率在原本为绝缘体的环氧基体中超过 450 S/m。石墨烯泡沫环氧复合材料的电导率超过 450 S/m,其电导率超过 450 S/m,在原本为绝缘体的环氧基体中超过 450 S/m。石墨烯泡沫环氧复合材料的电导率超过 450 S/m,其电导率超过 450 S/m,在原本为绝缘体的环氧基体中超过 450 S/m。石墨烯泡沫环氧复合材料的电导率超过 450 S/m,其电导率超过 450 S/m,在原本为绝缘体的环氧基体中超过 450 S/m。石墨烯泡沫环氧复合材料的电导率超过 450 S/m,其电导率超过 450 S/m,在原本为绝缘体的环氧基体中超过 450 S/m。它的导电性在不常见的金属中高达 4.1 的应变系数,是其两倍。由于 3D 石墨烯泡沫,环氧的热、机械和电性能同时得到改善,使环氧-石墨烯泡沫复合材料成为一种很有前途的轻质多功能材料,可用于航空航天、汽车、机器人和智能设备结构中的承载、电传输和运动感应。