Firestone Ross S, Cameron Scott A, Karp Jerome M, Arcus Vickery L, Schramm Vern L
Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States.
Faculty of Science and Engineering, Department of Biological Science, University of Waikato , Private Bag 3105, Hamilton, New Zealand.
ACS Chem Biol. 2017 Feb 17;12(2):464-473. doi: 10.1021/acschembio.6b00885. Epub 2016 Dec 27.
Human 5'-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5'-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (-ΔC), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔC of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔC. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔC for binding. In addition, ΔC values are not correlated with K values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (-ΔC). A comparison of the ΔC for MTAP presteady state chemistry and ΔC for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP-inhibitor complexes indicate remarkable protein thermal stability (to T = 99 °C) in complexes with transition-state analogues.
人5'-甲硫基腺苷磷酸化酶(MTAP)催化5'-甲硫基腺苷(MTA)的磷酸解反应。其作用调节细胞内的MTA,并将多胺合成与S-腺苷甲硫氨酸(AdoMet)的挽救联系起来。在生理温度下,具有皮摩尔解离常数的过渡态类似物通过熵驱动过程与MTAP结合,这表明复合物具有增加的疏水特性或动态结构。抑制剂结合表现出负的热容变化(-ΔC),因此结合时的焓变和熵变强烈依赖于温度。通过等温滴定量热法测定的抑制剂结合的ΔC不遵循传统趋势,并且与疏水效应预期的情况相反。因此,疏水性增加的配体结合时ΔC值增大。MTAP与过渡态类似物MT-DADMe-ImmA、BT-DADMe-ImmA、PrT-ImmA以及底物类似物MT-杀结核菌素形成的复合物的晶体结构显示,尽管结合的ΔC差异很大,但活性位点接触和整体蛋白质结构参数相似。此外,ΔC值与K值不相关。稳态前动力学的温度依赖性表明,MTAP反应的化学步骤在形成过渡态时具有负的热容(-ΔC)。MTAP稳态前化学的ΔC与抑制剂结合的ΔC的比较揭示了那些在结构和热力学上与过渡态最相似的过渡态类似物。MTAP脱辅酶以及与MT-DADMe-ImmA和MT-杀结核菌素形成的复合物的分子动力学模拟表明,受抑制的复合物中存在小但增加的动态运动。MTAP-抑制剂复合物的变温圆二色光谱研究表明,与过渡态类似物形成的复合物中蛋白质具有显著的热稳定性(至T = 99°C)。