International Iberian Nanotechnology Laboratory (INL) , Avenida Mestre Jose Veiga, 4715-330, Braga, Portugal.
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces , Potsdam 14424, Germany.
ACS Nano. 2017 Jan 24;11(1):821-830. doi: 10.1021/acsnano.6b07274. Epub 2016 Dec 30.
Nanostructured TiO of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO nanostructures. In this work we demonstrate that 3D Ti-self-doped TiO (TiO) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO anodes. The intrinsic electrical conductivity of the TiO layer can be significantly improved by the in situ generated Ti, and the amorphous, thin TiO nanomembrane provides a shortened Li diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti concentration and crystallinity degree in TiO nanomembranes, providing an opportunity to investigate the important influences of Ti self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO, giving rise to the state-of-the-art capacity (200 mAh g at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO anodes.
不同晶型的纳米结构 TiO2 作为锂离子电池的阳极材料,通过水热/溶剂热法制备,已被广泛研究了十余年。人们付出了巨大的努力来提高化学合成 TiO2 纳米结构的电导率和锂离子扩散率。在这项工作中,我们证明了通过物理气相沉积结合应变释放卷绕技术制备的 3D 自掺杂 Ti 的 TiO2(TiO)纳米膜在解决与 TiO2 阳极相关的一些长期挑战方面具有巨大的潜力。TiO 层的本征电导率可以通过原位生成的 Ti 显著提高,而非晶态、薄的 TiO2 纳米膜提供了缩短的 Li 扩散途径。所制备的材料表现出有利于锂存储的电化学反应机制。此外,还采用后处理来调整 TiO 纳米膜中的 Ti 浓度和结晶度,为研究 Ti 自掺杂和非晶结构对电化学过程的重要影响提供了机会。通过这些实验,我们量化并通过深入的动力学分析验证了不同结晶度的 TiO 纳米膜中赝电容的贡献。此外,还可以包含一层超薄的金属 Ti 层,这进一步提高了 TiO2 的锂存储性能,使其具有先进的容量(1 C 时为 200 mAh g)、卓越的倍率性能(高达 50 C)和超长的寿命(在 10 C 下循环 5000 次,保持率高达 100%)。