Suppr超能文献

整合物种分布模型中的多个数据源:数据融合框架。

Integrating multiple data sources in species distribution modeling: a framework for data fusion.

机构信息

Department of Forestry and Environmental Resources, Program in Fisheries, Wildlife, and Conservation Biology, North Carolina State University, Raleigh, North Carolina, 27695, USA.

Department of Statistics, North Carolina State University, Raleigh, North Carolina, 27695, USA.

出版信息

Ecology. 2017 Mar;98(3):840-850. doi: 10.1002/ecy.1710.

Abstract

The last decade has seen a dramatic increase in the use of species distribution models (SDMs) to characterize patterns of species' occurrence and abundance. Efforts to parameterize SDMs often create a tension between the quality and quantity of data available to fit models. Estimation methods that integrate both standardized and non-standardized data types offer a potential solution to the tradeoff between data quality and quantity. Recently several authors have developed approaches for jointly modeling two sources of data (one of high quality and one of lesser quality). We extend their work by allowing for explicit spatial autocorrelation in occurrence and detection error using a Multivariate Conditional Autoregressive (MVCAR) model and develop three models that share information in a less direct manner resulting in more robust performance when the auxiliary data is of lesser quality. We describe these three new approaches ("Shared," "Correlation," "Covariates") for combining data sources and show their use in a case study of the Brown-headed Nuthatch in the Southeastern U.S. and through simulations. All three of the approaches which used the second data source improved out-of-sample predictions relative to a single data source ("Single"). When information in the second data source is of high quality, the Shared model performs the best, but the Correlation and Covariates model also perform well. When the information quality in the second data source is of lesser quality, the Correlation and Covariates model performed better suggesting they are robust alternatives when little is known about auxiliary data collected opportunistically or through citizen scientists. Methods that allow for both data types to be used will maximize the useful information available for estimating species distributions.

摘要

在过去的十年中,物种分布模型(SDM)的使用急剧增加,以描述物种出现和丰度的模式。参数化 SDM 的努力经常在可用数据的质量和数量之间产生紧张关系。整合标准化和非标准化数据类型的估计方法为解决数据质量和数量之间的权衡提供了潜在的解决方案。最近,几位作者已经开发了联合建模两种数据来源(一种高质量,一种低质量)的方法。我们通过使用多元条件自回归(MVCAR)模型在发生和检测误差中允许显式空间自相关,扩展了他们的工作,并开发了三种以不太直接的方式共享信息的模型,从而在辅助数据质量较低时获得更稳健的性能。我们描述了这三种用于结合数据源的新方法(“共享”,“相关”,“协变量”),并通过案例研究和模拟展示了它们在美国东南部的棕头啄木鸟中的应用。使用第二个数据源的所有三种方法都改善了样本外预测,相对于单个数据源(“单个”)。当第二个数据源中的信息质量较高时,共享模型表现最佳,但相关和协变量模型也表现良好。当第二个数据源中的信息质量较低时,相关和协变量模型的表现更好,这表明当对通过机会或公民科学家收集的辅助数据了解甚少时,它们是稳健的替代方法。允许使用两种数据类型的方法将最大限度地提高用于估计物种分布的有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验