Udell Bradley J, Stratton Christian, Irvine Kathryn M, Straw Bethany Rose, Reichard Jonathan D, Gaulke Sarah, Coleman Jeremy T H, Tousley Frank C, Schuhmann Andrea N, Inman Richard D, Turner Melinda, Nystrom Sarah, Reichert Brian E
United States Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA.
Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.
Commun Biol. 2025 May 30;8(1):832. doi: 10.1038/s42003-025-08238-x.
Monitoring populations is challenging for cryptic species with seasonal life cycles, where data from multiple field techniques are commonly collected and analyzed as multiple lines of evidence. Data integration can provide comprehensive inferences while improving accuracy, precision, and scope but faces challenges in modeling misaligned resolutions and observational uncertainties. We developed a multi-scale, integrated species distribution model (MS-iSDM) for North American bats to combine data across monitoring types and seasons using joint likelihood methods, observational models with false-negatives and false-positives, and seasonal migratory connectivity. We applied this model to 11 years of data for an imperiled bat species (tricolored bat, Perimyotis subflavus). Relative abundance and occupancy were linked with multi-scale predictors, revealing clear patterns of population declines, but with important differences in spatial trends (abundance: corresponded with white-nose syndrome impacts, occupancy: at the range periphery) and overall severity (abundance: -74.8%, 95% CRI: -79.7% to -69.3%; occupancy: -35.5%, 95% CRI: -41.1% to -30.2%). The asynchrony between occupancy trends and population impacts was explained as an emergent pattern of spatiotemporal variation in abundance in the integrated distribution model. Compared to multiple lines of evidence, the integrated model provided consensus-estimates, increased precision and spatiotemporal scope, and strengthened evidence of population declines.
对于具有季节性生命周期的隐秘物种而言,监测其种群具有挑战性,这类物种的数据通常来自多种野外技术,并作为多条证据进行收集和分析。数据整合可以提供全面的推断,同时提高准确性、精度和范围,但在对不一致的分辨率和观测不确定性进行建模时面临挑战。我们为北美蝙蝠开发了一种多尺度综合物种分布模型(MS-iSDM),使用联合似然方法、具有假阴性和假阳性的观测模型以及季节性迁徙连通性,将不同监测类型和季节的数据结合起来。我们将该模型应用于一种濒危蝙蝠物种(三色蝙蝠,Perimyotis subflavus)的11年数据。相对丰度和占有率与多尺度预测因子相关联,揭示了种群数量下降的明显模式,但在空间趋势(丰度:与白鼻综合征的影响相对应,占有率:在分布范围边缘)和总体严重程度(丰度:-74.8%,95% CRI:-79.7%至-69.3%;占有率:-35.5%,95% CRI:-41.1%至-30.2%)方面存在重要差异。占有率趋势与种群影响之间的不同步被解释为综合分布模型中丰度时空变化的一种显现模式。与多条证据相比,综合模型提供了一致估计,提高了精度和时空范围,并加强了种群数量下降的证据。