Suppr超能文献

解码声音-意义映射的皮层动力学

Decoding the Cortical Dynamics of Sound-Meaning Mapping.

作者信息

Kocagoncu Ece, Clarke Alex, Devereux Barry J, Tyler Lorraine K

机构信息

Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.

Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom

出版信息

J Neurosci. 2017 Feb 1;37(5):1312-1319. doi: 10.1523/JNEUROSCI.2858-16.2016. Epub 2016 Dec 27.

Abstract

UNLABELLED

Comprehending speech involves the rapid and optimally efficient mapping from sound to meaning. Influential cognitive models of spoken word recognition (Marslen-Wilson and Welsh, 1978) propose that the onset of a spoken word initiates a continuous process of activation of the lexical and semantic properties of the word candidates matching the speech input and competition between them, which continues until the point at which the word is differentiated from all other cohort candidates (the uniqueness point, UP). At this point, the word is recognized uniquely and only the target word's semantics are active. Although it is well established that spoken word recognition engages the superior (Rauschecker and Scott, 2009), middle, and inferior (Hickok and Poeppel, 2007) temporal cortices, little is known about the real-time brain activity that underpins the computations and representations that evolve over time during the transformation from speech to meaning. Here, we test for the first time the spatiotemporal dynamics of these processes by collecting MEG data while human participants listened to spoken words. By constructing quantitative models of competition and access to meaning in combination with spatiotemporal searchlight representational similarity analysis (Kriegeskorte et al., 2006) in source space, we were able to test where and when these models produced significant effects. We found early transient effects ∼400 ms before the UP of lexical competition in left supramarginal gyrus, left superior temporal gyrus, left middle temporal gyrus (MTG), and left inferior frontal gyrus (IFG) and of semantic competition in MTG, left angular gyrus, and IFG. After the UP, there were no competitive effects, only target-specific semantic effects in angular gyrus and MTG.

SIGNIFICANCE STATEMENT

Understanding spoken words involves complex processes that transform the auditory input into a meaningful interpretation. This effortless transition occurs on millisecond timescales, with remarkable speed and accuracy and without any awareness of the complex computations involved. Here, we reveal the real-time neural dynamics of these processes by collecting data about listeners' brain activity as they hear spoken words. Using novel statistical models of different aspects of the recognition process, we can locate directly which parts of the brain are accessing the stored form and meaning of words and how the competition between different word candidates is resolved neurally in real time. This gives us a uniquely differentiated picture of the neural substrate for the first 500 ms of word recognition.

摘要

未标注

理解言语涉及从声音到意义的快速且最优效率的映射。有影响力的口语单词识别认知模型(Marslen-Wilson和Welsh,1978)提出,一个口语单词的起始会引发一个连续的过程,即与语音输入匹配的候选单词的词汇和语义属性的激活以及它们之间的竞争,这个过程会持续到该单词与所有其他同类候选单词区分开来的时刻(唯一识别点,UP)。在这一点上,该单词被唯一识别,并且只有目标单词的语义是活跃的。尽管口语单词识别涉及上颞叶(Rauschecker和Scott,2009)、中颞叶和下颞叶(Hickok和Poeppel,2007)已得到充分证实,但对于在从语音到意义的转换过程中随着时间推移而演变的计算和表征所基于的实时大脑活动却知之甚少。在这里,我们首次通过在人类参与者听口语单词时收集脑磁图(MEG)数据来测试这些过程的时空动态。通过结合源空间中的时空探照灯表征相似性分析(Kriegeskorte等人,2006)构建竞争和意义获取的定量模型,我们能够测试这些模型在何时何地产生显著影响。我们发现在左缘上回、左上颞回、左中颞回(MTG)和左下额回(IFG)中,在词汇竞争的唯一识别点之前约400毫秒出现早期瞬态效应,在MTG、左角回和IFG中在语义竞争时出现早期瞬态效应。在唯一识别点之后,没有竞争效应,仅在角回和MTG中出现目标特异性语义效应。

意义声明

理解口语单词涉及将听觉输入转化为有意义解释的复杂过程。这种轻松的转换发生在毫秒时间尺度上,速度和准确性惊人,并且无需意识到其中涉及的复杂计算。在这里,我们通过收集听众听到口语单词时的大脑活动数据来揭示这些过程的实时神经动态。使用识别过程不同方面的新型统计模型,我们可以直接定位大脑的哪些部分正在获取单词的存储形式和意义,以及不同候选单词之间的竞争如何在神经层面实时解决。这为我们提供了单词识别最初500毫秒内神经基础的独特差异化图景。

相似文献

1
Decoding the Cortical Dynamics of Sound-Meaning Mapping.解码声音-意义映射的皮层动力学
J Neurosci. 2017 Feb 1;37(5):1312-1319. doi: 10.1523/JNEUROSCI.2858-16.2016. Epub 2016 Dec 27.
5
Optimally efficient neural systems for processing spoken language.最优化的语言处理神经效率系统。
Cereb Cortex. 2014 Apr;24(4):908-18. doi: 10.1093/cercor/bhs366. Epub 2012 Dec 18.
7
Neural dynamics of semantic composition.语义组合的神经动力学。
Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21318-21327. doi: 10.1073/pnas.1903402116. Epub 2019 Sep 30.
9
Electrostimulation mapping of comprehension of auditory and visual words.听觉和视觉单词理解的电刺激图谱
Cortex. 2015 Oct;71:398-408. doi: 10.1016/j.cortex.2015.07.001. Epub 2015 Jul 26.

引用本文的文献

3
Neural representation of phonological wordform in temporal cortex.颞叶皮质中语音词形的神经表征。
Psychon Bull Rev. 2024 Dec;31(6):2659-2671. doi: 10.3758/s13423-024-02511-6. Epub 2024 Apr 30.
7
Auditory Word Comprehension Is Less Incremental in Isolated Words.孤立单词的听觉单词理解增量较小。
Neurobiol Lang (Camb). 2023 Jan 18;4(1):29-52. doi: 10.1162/nol_a_00084. eCollection 2023.
9
Decoding the temporal dynamics of spoken word and nonword processing from EEG.从 EEG 解码口语和非口语处理的时间动态。
Neuroimage. 2022 Oct 15;260:119457. doi: 10.1016/j.neuroimage.2022.119457. Epub 2022 Jul 14.
10
Resolving the time course of visual and auditory object categorization.解决视觉和听觉物体分类的时间进程。
J Neurophysiol. 2022 Jun 1;127(6):1622-1628. doi: 10.1152/jn.00515.2021. Epub 2022 May 18.

本文引用的文献

5
Phonetic feature encoding in human superior temporal gyrus.人类上颞回中的语音特征编码。
Science. 2014 Feb 28;343(6174):1006-10. doi: 10.1126/science.1245994. Epub 2014 Jan 30.
8
Optimally efficient neural systems for processing spoken language.最优化的语言处理神经效率系统。
Cereb Cortex. 2014 Apr;24(4):908-18. doi: 10.1093/cercor/bhs366. Epub 2012 Dec 18.
10
The angular gyrus: multiple functions and multiple subdivisions.角回:多种功能和多个细分。
Neuroscientist. 2013 Feb;19(1):43-61. doi: 10.1177/1073858412440596. Epub 2012 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验