Suppr超能文献

用于检测和校正粒子跟踪中误差的单像素内部填充函数方法

Single-pixel interior filling function approach for detecting and correcting errors in particle tracking.

作者信息

Burov Stanislav, Figliozzi Patrick, Lin Binhua, Rice Stuart A, Scherer Norbert F, Dinner Aaron R

机构信息

Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel.

James Franck Institute, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):221-226. doi: 10.1073/pnas.1619104114. Epub 2016 Dec 27.

Abstract

We present a general method for detecting and correcting biases in the outputs of particle-tracking experiments. Our approach is based on the histogram of estimated positions within pixels, which we term the single-pixel interior filling function (SPIFF). We use the deviation of the SPIFF from a uniform distribution to test the veracity of tracking analyses from different algorithms. Unbiased SPIFFs correspond to uniform pixel filling, whereas biased ones exhibit pixel locking, in which the estimated particle positions concentrate toward the centers of pixels. Although pixel locking is a well-known phenomenon, we go beyond existing methods to show how the SPIFF can be used to correct errors. The key is that the SPIFF aggregates statistical information from many single-particle images and localizations that are gathered over time or across an ensemble, and this information augments the single-particle data. We explicitly consider two cases that give rise to significant errors in estimated particle locations: undersampling the point spread function due to small emitter size and intensity overlap of proximal objects. In these situations, we show how errors in positions can be corrected essentially completely with little added computational cost. Additional situations and applications to experimental data are explored in SI Appendix In the presence of experimental-like shot noise, the precision of the SPIFF-based correction achieves (and can even exceed) the unbiased Cramér-Rao lower bound. We expect the SPIFF approach to be useful in a wide range of localization applications, including single-molecule imaging and particle tracking, in fields ranging from biology to materials science to astronomy.

摘要

我们提出了一种用于检测和校正粒子跟踪实验输出偏差的通用方法。我们的方法基于像素内估计位置的直方图,我们将其称为单像素内部填充函数(SPIFF)。我们使用SPIFF与均匀分布的偏差来测试不同算法的跟踪分析的准确性。无偏差的SPIFF对应于均匀的像素填充,而有偏差的SPIFF则表现出像素锁定,即估计的粒子位置集中在像素中心。尽管像素锁定是一个众所周知的现象,但我们超越了现有方法,展示了如何使用SPIFF来校正误差。关键在于SPIFF汇总了来自许多单粒子图像以及随时间或跨集合收集的定位的统计信息,并且该信息增强了单粒子数据。我们明确考虑了两种在估计粒子位置时会产生重大误差的情况:由于发射体尺寸小导致点扩散函数欠采样以及近端物体的强度重叠。在这些情况下,我们展示了如何以几乎不增加计算成本的方式基本完全校正位置误差。SI附录中探讨了其他情况以及对实验数据的应用。在存在类似实验散粒噪声的情况下,基于SPIFF的校正精度达到(甚至可以超过)无偏差的克拉美 - 罗下界。我们期望SPIFF方法在从生物学到材料科学再到天文学等广泛的定位应用中有用,包括单分子成像和粒子跟踪。

相似文献

3
Accurate particle position measurement from images.从图像中精确测量粒子位置。
Rev Sci Instrum. 2007 May;78(5):053704. doi: 10.1063/1.2735920.
5
Automated tracking of colloidal clusters with sub-pixel accuracy and precision.以亚像素精度和精密度自动跟踪胶体团簇。
J Phys Condens Matter. 2017 Feb 1;29(4):044001. doi: 10.1088/1361-648X/29/4/044001. Epub 2016 Nov 22.
7
Unbiased centroiding of point targets close to the Cramer Rao limit.接近克拉美罗界的点目标无偏质心提取
J Opt Soc Am A Opt Image Sci Vis. 2024 Feb 1;41(2):195-206. doi: 10.1364/JOSAA.507588.

本文引用的文献

2
Objective comparison of particle tracking methods.目的比较粒子跟踪方法。
Nat Methods. 2014 Mar;11(3):281-9. doi: 10.1038/nmeth.2808. Epub 2014 Jan 19.
3
Superresolution localization methods.超分辨率定位方法。
Annu Rev Phys Chem. 2014;65:107-25. doi: 10.1146/annurev-physchem-040513-103735. Epub 2013 Nov 21.
4
Distribution of directional change as a signature of complex dynamics.方向性变化的分布作为复杂动力学的特征。
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19689-94. doi: 10.1073/pnas.1319473110. Epub 2013 Nov 18.
5
Intracellular transport of insulin granules is a subordinated random walk.胰岛素颗粒的细胞内运输是一种从属的随机漫步。
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4911-6. doi: 10.1073/pnas.1221962110. Epub 2013 Mar 11.
6
Observation and characterization of the vestige of the jamming transition in a thermal three-dimensional system.热三维系统中干扰转变遗迹的观测与表征
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012303. doi: 10.1103/PhysRevE.87.012303. Epub 2013 Jan 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验