Sauser Zachrison Kori, Iwashyna Theodore J, Gebremariam Achamyeleh, Hutchins Meghan, Lee Joyce M
Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Zero Emerson Place Suite 3B, 55 Fruit Street, Boston, MA, 02114, USA.
VA HSR&D Center of Excellence, Ann Arbor, MI, USA.
BMC Med Res Methodol. 2016 Dec 28;16(1):174. doi: 10.1186/s12874-016-0274-4.
Connected individuals (or nodes) in a network are more likely to be similar than two randomly selected nodes due to homophily and/or network influence. Distinguishing between these two influences is an important goal in network analysis, and generalized estimating equation (GEE) analyses of longitudinal dyadic network data are an attractive approach. It is not known to what extent such regressions can accurately extract underlying data generating processes. Therefore our primary objective is to determine to what extent, and under what conditions, does the GEE-approach recreate the actual dynamics in an agent-based model.
We generated simulated cohorts with pre-specified network characteristics and attachments in both static and dynamic networks, and we varied the presence of homophily and network influence. We then used statistical regression and examined the GEE model performance in each cohort to determine whether the model was able to detect the presence of homophily and network influence.
In cohorts with both static and dynamic networks, we find that the GEE models have excellent sensitivity and reasonable specificity for determining the presence or absence of network influence, but little ability to distinguish whether or not homophily is present.
The GEE models are a valuable tool to examine for the presence of network influence in longitudinal data, but are quite limited with respect to homophily.
由于同质性和/或网络影响,网络中相互连接的个体(或节点)比两个随机选择的节点更有可能相似。区分这两种影响是网络分析中的一个重要目标,对纵向二元网络数据进行广义估计方程(GEE)分析是一种有吸引力的方法。目前尚不清楚这种回归在多大程度上能够准确提取潜在的数据生成过程。因此,我们的主要目标是确定GEE方法在何种程度上以及在何种条件下能够重现基于主体模型中的实际动态。
我们在静态和动态网络中生成了具有预先指定网络特征和连接关系的模拟队列,并改变了同质性和网络影响的存在情况。然后,我们使用统计回归并检查每个队列中的GEE模型性能,以确定该模型是否能够检测到同质性和网络影响的存在。
在静态和动态网络的队列中,我们发现GEE模型在确定网络影响的存在与否方面具有出色的敏感性和合理的特异性,但在区分同质性是否存在方面能力有限。
GEE模型是检查纵向数据中网络影响存在情况的有价值工具,但在同质性方面相当有限。