Suppr超能文献

区分动态网络中基于影响的传播和基于相似性的扩散。

Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks.

机构信息

Information, Operations and Management Sciences Department, Stern School of Business, New York University, Kaufmann Management Center, 44 West 4th Street, New York, NY 10012, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21544-9. doi: 10.1073/pnas.0908800106. Epub 2009 Dec 10.

Abstract

Node characteristics and behaviors are often correlated with the structure of social networks over time. While evidence of this type of assortative mixing and temporal clustering of behaviors among linked nodes is used to support claims of peer influence and social contagion in networks, homophily may also explain such evidence. Here we develop a dynamic matched sample estimation framework to distinguish influence and homophily effects in dynamic networks, and we apply this framework to a global instant messaging network of 27.4 million users, using data on the day-by-day adoption of a mobile service application and users' longitudinal behavioral, demographic, and geographic data. We find that previous methods overestimate peer influence in product adoption decisions in this network by 300-700%, and that homophily explains >50% of the perceived behavioral contagion. These findings and methods are essential to both our understanding of the mechanisms that drive contagions in networks and our knowledge of how to propagate or combat them in domains as diverse as epidemiology, marketing, development economics, and public health.

摘要

节点的特征和行为通常与随时间推移的社交网络结构相关。虽然这种关联节点之间行为的混合和时间聚类的证据被用于支持网络中同伴影响和社会传染的说法,但同质性也可能解释这种证据。在这里,我们开发了一个动态匹配样本估计框架,以区分动态网络中的影响和同质性效应,并将该框架应用于 2740 万用户的全球即时通讯网络,使用有关移动服务应用程序的日常采用以及用户的纵向行为、人口统计和地理数据。我们发现,在这个网络中,以前的方法高估了产品采用决策中的同伴影响,高达 300-700%,而同质性解释了 >50%的感知行为传染。这些发现和方法对于我们理解网络中驱动传染的机制以及我们在流行病学、营销、发展经济学和公共卫生等各个领域传播或对抗它们的知识都是至关重要的。

相似文献

2
Multidimensional diffusion processes in dynamic online networks.动态在线网络中的多维扩散过程。
PLoS One. 2020 Feb 6;15(2):e0228421. doi: 10.1371/journal.pone.0228421. eCollection 2020.
7
Sensitivity analysis for contagion effects in social networks.社交网络中传染效应的敏感性分析。
Sociol Methods Res. 2011 May;40(2):240-255. doi: 10.1177/0049124111404821.
9
Multi-stage complex contagions.多阶段复杂传播。
Chaos. 2013 Mar;23(1):013124. doi: 10.1063/1.4790836.

引用本文的文献

1
Explaining the Diffusion of Project ECHO.解释项目ECHO的传播情况。
Implement Sci Commun. 2025 Aug 19;6(1):88. doi: 10.1186/s43058-025-00778-x.
4
Food choice mimicry on a large university campus.大型大学校园里的食物选择模仿行为。
PNAS Nexus. 2024 Nov 16;3(12):pgae517. doi: 10.1093/pnasnexus/pgae517. eCollection 2024 Dec.
7
Self-views converge during enjoyable conversations.在愉快的对话中,自我观点会趋于一致。
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2321652121. doi: 10.1073/pnas.2321652121. Epub 2024 Oct 14.

本文引用的文献

1
Social science. Computational social science.社会科学。计算社会科学。
Science. 2009 Feb 6;323(5915):721-3. doi: 10.1126/science.1167742.
2
An empirical framework for binary interactome mapping.用于二元相互作用组图谱绘制的实证框架。
Nat Methods. 2009 Jan;6(1):83-90. doi: 10.1038/nmeth.1280. Epub 2008 Dec 7.
5
Distribution of node characteristics in complex networks.复杂网络中节点特征的分布
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17916-20. doi: 10.1073/pnas.0705081104. Epub 2007 Nov 7.
6
The product space conditions the development of nations.产品空间制约着各国的发展。
Science. 2007 Jul 27;317(5837):482-7. doi: 10.1126/science.1144581.
7
8
Structure and tie strengths in mobile communication networks.移动通信网络中的结构与连接强度
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7332-6. doi: 10.1073/pnas.0610245104. Epub 2007 Apr 24.
9
Quantifying social group evolution.量化社会群体演变。
Nature. 2007 Apr 5;446(7136):664-7. doi: 10.1038/nature05670.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验