Suppr超能文献

通过有限脉冲响应数字滤波器进行听觉脑干诱发电位峰值识别。

Auditory brainstem evoked potentials peak identification by finite impulse response digital filters.

作者信息

Pratt H, Urbach D, Bleich N

机构信息

Evoked Potentials Laboratory, Technion, Israel Institute of Technology, Haifa, Israel.

出版信息

Audiology. 1989;28(5):272-83. doi: 10.3109/00206098909081634.

Abstract

Linear phase finite impulse response (FIR) filtering can be used to differentiate auditory brainstem evoked potentials (ABEP) components. The power spectrum of ABEP at high intensities indicates that they contain 3 frequency bands that can be distinguished by applying appropriate digital filters with the following characteristics: up to 240 Hz (revealing slow components), 240-483 Hz (resulting in medium components) and above 500 Hz (leaving only fast components). The results using these filters, indicate that the medium components coincide with peaks I, III and V and that the slow filter results in a 'pedestal' whose peak coincides with peak V. These findings were used for automatic identification of ABEP peaks. A coincidence of the 'pedestal' peak with a medium component was sought and labelled peak V. The preceding medium peaks were labelled, in order of decreasing latency, III and I. Validation of this procedure was conducted on ABEP from normal subjects, using different stimulus rates and intensities, as well as from selected neurological patients with lesions affecting the brainstem. Provided the waveform included a 'pedestal', the results proved this procedure to be reliable and in very good agreement with manual identification and measurement of ABEP peaks.

摘要

线性相位有限脉冲响应(FIR)滤波可用于区分听觉脑干诱发电位(ABEP)的各成分。高强度下ABEP的功率谱表明,它们包含3个频段,通过应用具有以下特性的适当数字滤波器可以区分:高达240Hz(揭示慢成分)、240 - 483Hz(产生中成分)以及高于500Hz(仅留下快成分)。使用这些滤波器的结果表明,中成分与峰I、III和V重合,慢滤波器产生一个“基座”,其峰值与峰V重合。这些发现被用于ABEP峰的自动识别。寻找“基座”峰与中成分的重合点并标记为峰V。按照潜伏期递减的顺序,将先前的中峰标记为III和I。使用不同的刺激速率和强度,以及从患有影响脑干病变的选定神经科患者的ABEP上对该程序进行了验证。只要波形包含一个“基座”,结果就证明该程序是可靠的,并且与手动识别和测量ABEP峰非常一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验