Suppr超能文献

射血分数保留的心力衰竭的分子研究方法:微小RNA与诱导多能干细胞衍生的心肌细胞

Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes.

作者信息

Kriegel Alison J, Gartz Melanie, Afzal Muhammad Z, de Lange Willem J, Ralphe J Carter, Strande Jennifer L

机构信息

Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.

Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.

出版信息

J Cardiovasc Transl Res. 2017 Jun;10(3):295-304. doi: 10.1007/s12265-016-9723-z. Epub 2016 Dec 28.

Abstract

Heart failure with preserved left ventricular ejection fraction (HFpEF) has emerged as one of the largest unmet needs in cardiovascular medicine. HFpEF is increasing in prevalence and causes significant morbidity, mortality, and health care resource utilization. Patients have multiple co-morbidities which contribute to the disease complexity. To date, no effective treatment for HFpEF has been identified. The paucity of cardiac biopsies from this patient population and the absence of well-accepted animal models limit our understanding of the underlying molecular mechanisms of HFpEF. In this review, we discuss combining state-of-the-art technologies of microRNA profiling and human induced pluripotent cell-derived cardiomyocytes (iPSC-CMs) in order to uncover novel molecular pathways that may contribute to the development of HFpEF. Here, we focus the advantages and limitations of microRNA profiling and iPSC-CMs as a disease model system to discover molecular mechanisms in HFpEF.

摘要

射血分数保留的心力衰竭(HFpEF)已成为心血管医学中最大的未满足需求之一。HFpEF的患病率正在上升,并导致显著的发病率、死亡率和医疗资源利用。患者有多种合并症,这增加了疾病的复杂性。迄今为止,尚未确定针对HFpEF的有效治疗方法。来自该患者群体的心脏活检样本稀少,且缺乏广泛认可的动物模型,这限制了我们对HFpEF潜在分子机制的理解。在本综述中,我们讨论了将微小RNA谱分析和人诱导多能干细胞衍生的心肌细胞(iPSC-CMs)的前沿技术相结合,以揭示可能导致HFpEF发生发展的新分子途径。在此,我们重点探讨微小RNA谱分析和iPSC-CMs作为疾病模型系统在发现HFpEF分子机制方面的优势和局限性。

相似文献

1
Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes.
J Cardiovasc Transl Res. 2017 Jun;10(3):295-304. doi: 10.1007/s12265-016-9723-z. Epub 2016 Dec 28.
5
Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle.
Cardiovasc Res. 2018 May 1;114(6):782-793. doi: 10.1093/cvr/cvy049.
6
Contribution of two-pore K channels to cardiac ventricular action potential revealed using human iPSC-derived cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1144-H1153. doi: 10.1152/ajpheart.00107.2017. Epub 2017 Mar 24.
7
Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue.
Circ Heart Fail. 2016 Jan;9(1):e002724. doi: 10.1161/CIRCHEARTFAILURE.115.002724.
8
Optimizing the discovery and assessment of therapeutic targets in heart failure with preserved ejection fraction.
ESC Heart Fail. 2021 Oct;8(5):3643-3655. doi: 10.1002/ehf2.13504. Epub 2021 Aug 2.

引用本文的文献

2
Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes.
Dis Markers. 2021 Jan 13;2021:6644631. doi: 10.1155/2021/6644631. eCollection 2021.
3
Potential use of ubiquinol and d-ribose in patients with heart failure with preserved ejection fraction.
Ann Med Surg (Lond). 2020 May 18;55:77-80. doi: 10.1016/j.amsu.2020.05.009. eCollection 2020 Jul.
4
Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug.
Precis Clin Med. 2019 Sep;2(3):166-182. doi: 10.1093/pcmedi/pbz019. Epub 2019 Oct 1.
6
Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview.
J Cardiovasc Transl Res. 2017 Jun;10(3):233-244. doi: 10.1007/s12265-017-9756-y. Epub 2017 Jun 5.
7
Phenomapping for the Identification of Hypertensive Patients with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction.
J Cardiovasc Transl Res. 2017 Jun;10(3):275-284. doi: 10.1007/s12265-017-9739-z. Epub 2017 Mar 3.

本文引用的文献

1
Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes.
Heart Rhythm. 2016 Dec;13(12):2379-2387. doi: 10.1016/j.hrthm.2016.08.045. Epub 2016 Sep 14.
2
Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing.
Tissue Eng Part C Methods. 2016 Oct;22(10):932-940. doi: 10.1089/ten.TEC.2016.0257. Epub 2016 Sep 28.
3
Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients.
Biomarkers. 2017 May-Jun;22(3-4):268-278. doi: 10.1080/1354750X.2016.1204004. Epub 2016 Jul 11.
4
Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction.
Eur J Heart Fail. 2016 Aug;18(8):987-97. doi: 10.1002/ejhf.524. Epub 2016 May 2.
5
Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy.
J Cardiovasc Pharmacol Ther. 2016 Nov;21(6):549-562. doi: 10.1177/1074248416636477. Epub 2016 Mar 2.
6
Animal models of heart failure with preserved ejection fraction.
Neth Heart J. 2016 Apr;24(4):275-86. doi: 10.1007/s12471-016-0815-9.
7
Differential Expression of MicroRNAs in Chronic Obstructive Pulmonary Disease.
Adv Clin Exp Med. 2016 Jan-Feb;25(1):21-6. doi: 10.17219/acem/28343.
8
MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond.
Food Chem Toxicol. 2016 Dec;98(Pt A):73-88. doi: 10.1016/j.fct.2016.02.018. Epub 2016 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验