Preimesberger Matthew R, Majumdar Ananya, Lecomte Juliette T J
T. C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States.
Biomolecular NMR Center, Johns Hopkins University , Baltimore, Maryland 21218, United States.
Biochemistry. 2017 Jan 31;56(4):551-569. doi: 10.1021/acs.biochem.6b00926. Epub 2017 Jan 18.
Nitrate metabolism in Chlamydomonas reinhardtii involves THB1, a monomeric hemoglobin thought to function as a nitric oxide dioxygenase (NOD). NOD activity requires dioxygen and nitric oxide binding followed by a one-electron oxidation of the heme iron and nitrate release. Unlike pentacoordinate flavohemoglobins, which are efficient NODs, THB1 uses two iron axial ligands: the conserved proximal histidine and a distal lysine (Lys53). As a ligand in both the oxidized (ferric) and reduced (ferrous) states, Lys53 is expected to lower the reorganization energy associated with electron transfer and therefore facilitate reduction of the ferric enzyme. In ferrous THB1, however, Lys53 must be displaced for substrate binding. To characterize Lys53 dynamics, THB1 was studied at various pH, temperatures, and pressures by NMR spectroscopy. Structural information indicates that the protein fold and Lys53 environment are independent of the oxidation state. High-pressure NMR experiments provided evidence that displacement of Lys53 occurs through fast equilibrium (∼3-4 × 10 s at 1 bar, 298 K) with a low-population intermediate in which Lys53 is neutral and decoordinated. Once decoordinated, Lys53 is able to orient toward solvent and become protonated. The global lysine decoordination/reorientation/protonation processes measured by N-exchange spectroscopy are slow on the chemical shift time scale (10-10 s at pH ≈ 6.5, 298 K) in both iron redox states. Thus, reorientation/protonation steps in ferrous THB1 appear to present a significant barrier for dioxygen binding, and consequently, NOD turnover. The results illustrate the role of distal ligand dynamics in regulating the kinetics of multistep heme redox reactions.
莱茵衣藻中的硝酸盐代谢涉及THB1,一种被认为具有一氧化氮双加氧酶(NOD)功能的单体血红蛋白。NOD活性需要氧气和一氧化氮结合,随后血红素铁发生单电子氧化并释放硝酸盐。与高效的NOD五配位黄素血红蛋白不同,THB1使用两个铁轴向配体:保守的近端组氨酸和远端赖氨酸(Lys53)。作为氧化态(铁离子)和还原态(亚铁离子)的配体,Lys53预计会降低与电子转移相关的重组能,从而促进铁离子酶的还原。然而,在亚铁THB1中,Lys53必须被取代才能进行底物结合。为了表征Lys53的动力学,通过核磁共振光谱在不同的pH、温度和压力下对THB1进行了研究。结构信息表明,蛋白质折叠和Lys53环境与氧化态无关。高压核磁共振实验提供的证据表明,Lys53的取代是通过快速平衡(在1巴、298 K时约为3 - 4×10 s)发生的,存在一个低丰度中间体,其中Lys53是中性且去配位的。一旦去配位,Lys53能够朝向溶剂定向并质子化。通过氮交换光谱测量的全局赖氨酸去配位/重新定向/质子化过程在两种铁氧化还原状态下的化学位移时间尺度上都很慢(在pH≈6.5、298 K时为10 - 10 s)。因此,亚铁THB1中的重新定向/质子化步骤似乎对氧气结合以及因此对NOD周转构成了重大障碍。结果说明了远端配体动力学在调节多步血红素氧化还原反应动力学中的作用。