Suppr超能文献

血红素与聚球藻血红蛋白的共价结合改变了其对一氧化氮的反应性。

Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide.

机构信息

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

J Inorg Biochem. 2017 Dec;177:171-182. doi: 10.1016/j.jinorgbio.2017.09.018. Epub 2017 Sep 22.

Abstract

The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (Fe-NO) that resist reductive nitrosylation to the paramagnetic Fe-NO forms. Dithionite reduction of Fe-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected Fe-NO complex, NO binding to Fe GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining Fe GlbN, N-labeled nitrite, and excess dithionite resulted in the formation of Fe-HNO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in Fe GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.

摘要

聚球藻 PCC 7002 中的蓝细菌产生单体血红蛋白(GlbN),该血红蛋白与活性氮和氧物种的解毒有关。GlbN 含有一个 b 血红素,该血红素可以在某些还原条件下发生修饰。修饰后的蛋白质(GlbN-A)具有一个血红素-组氨酸 C-N 键,类似于细胞色素 c 的 C-S 键。尚未赋予该修饰明确的功能作用。在这里,使用光学吸收光谱和 NMR 光谱比较了 GlbN 和 GlbN-A 对一氧化氮(NO)的反应性。两种形式的蛋白质都具有 NO 加双氧酶活性,并且在多次 NO 挑战后都会发生血红素漂白。GlbN 和 GlbN-A 在高铁状态下结合 NO 并形成抗还原亚硝化为顺磁性 Fe-NO 形式的顺磁性配合物(Fe-NO)。然而,二硫苏糖醇还原 Fe-NO GlbN 和 GlbN-A 导致了截然不同的结果。虽然 GlbN-A 迅速形成了预期的 Fe-NO 配合物,但 Fe GlbN 与 NO 的结合导致立即失去血红素,并且值得注意的是,随后血红素缓慢重新结合并产生 HNO(亚硝酰氢化物)。此外,将 Fe GlbN、N 标记的亚硝酸盐和过量的二硫苏糖醇结合起来会形成 Fe-HNO GlbN。还观察到二硫苏糖醇介导的 HNO 生成来自 Synechocystis sp. PCC 6803 的相关 GlbN。尽管亚铁 GlbN-A 似乎能够捕获预先形成的 HNO,但组氨酸-血红素的翻译后修饰消除了与 GlbN 相关的 NO 还原化学。总体而言,这些结果表明共价修饰在 Fe GlbNs 中的作用:防止 NO 介导的血红素丢失和防止 HNO 形成。

相似文献

1
Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide.
J Inorg Biochem. 2017 Dec;177:171-182. doi: 10.1016/j.jinorgbio.2017.09.018. Epub 2017 Sep 22.
2
Influence of heme post-translational modification and distal ligation on the backbone dynamics of a monomeric hemoglobin.
Biochemistry. 2012 Jul 24;51(29):5733-47. doi: 10.1021/bi300624a. Epub 2012 Jul 9.
4
Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study.
Biochim Biophys Acta. 2013 Sep;1834(9):1910-22. doi: 10.1016/j.bbapap.2013.04.016. Epub 2013 Apr 22.
5
Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates.
Biochemistry. 2018 Feb 6;57(5):631-644. doi: 10.1021/acs.biochem.7b01155. Epub 2018 Jan 10.
8
Facile heme vinyl posttranslational modification in a hemoglobin.
Biochemistry. 2013 May 21;52(20):3478-88. doi: 10.1021/bi400289e. Epub 2013 May 6.
9
Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.
J Inorg Biochem. 2014 Dec;141:198-207. doi: 10.1016/j.jinorgbio.2014.09.009. Epub 2014 Sep 28.
10
Functional and structural characterization of the 2/2 hemoglobin from Synechococcus sp. PCC 7002.
Biochemistry. 2010 Aug 24;49(33):7000-11. doi: 10.1021/bi100463d.

引用本文的文献

1
Protein-derived cofactors: chemical innovations expanding enzyme catalysis.
Chem Soc Rev. 2025 May 6;54(9):4502-4530. doi: 10.1039/d4cs00981a.
3
Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA.
AMB Express. 2019 Oct 17;9(1):166. doi: 10.1186/s13568-019-0888-0.
4
Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton.
Front Microbiol. 2019 Feb 5;10:134. doi: 10.3389/fmicb.2019.00134. eCollection 2019.
5
Lysine as a heme iron ligand: A property common to three truncated hemoglobins from Chlamydomonas reinhardtii.
Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2660-2673. doi: 10.1016/j.bbagen.2018.08.009. Epub 2018 Aug 10.
6
Histidine-Lysine Axial Ligand Switching in a Hemoglobin: A Role for Heme Propionates.
Biochemistry. 2018 Feb 6;57(5):631-644. doi: 10.1021/acs.biochem.7b01155. Epub 2018 Jan 10.

本文引用的文献

1
Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1.
Biochemistry. 2017 Jan 31;56(4):551-569. doi: 10.1021/acs.biochem.6b00926. Epub 2017 Jan 18.
2
Biological Relevance of Free Radicals and Nitroxides.
Cell Biochem Biophys. 2017 Jun;75(2):227-240. doi: 10.1007/s12013-016-0759-0. Epub 2016 Oct 6.
3
Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.
Adv Microb Physiol. 2016;68:353-432. doi: 10.1016/bs.ampbs.2016.02.007. Epub 2016 Mar 29.
4
Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom.
Sci Signal. 2016 Mar 1;9(417):re2. doi: 10.1126/scisignal.aad4403.
5
Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives.
Biochim Biophys Acta. 2016 Aug;1864(8):952-66. doi: 10.1016/j.bbapap.2016.02.006. Epub 2016 Feb 6.
6
7
Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002.
Front Microbiol. 2015 Oct 31;6:1217. doi: 10.3389/fmicb.2015.01217. eCollection 2015.
8
Electron self-exchange in hemoglobins revealed by deutero-hemin substitution.
J Inorg Biochem. 2015 Sep;150:139-47. doi: 10.1016/j.jinorgbio.2015.06.014. Epub 2015 Jun 18.
9
Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.
J Inorg Biochem. 2014 Dec;141:198-207. doi: 10.1016/j.jinorgbio.2014.09.009. Epub 2014 Sep 28.
10
Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide.
Acc Chem Res. 2014 Oct 21;47(10):3196-205. doi: 10.1021/ar5002507. Epub 2014 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验