Suppr超能文献

超声辅助制备具有高光催化性能的等离子体 ZnO/Ag/AgWO 纳米复合材料用于降解有机污染物。

Ultrasonic-assisted preparation of plasmonic ZnO/Ag/AgWO nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants.

机构信息

Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.

Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.

出版信息

J Colloid Interface Sci. 2017 Apr 1;491:216-229. doi: 10.1016/j.jcis.2016.12.044. Epub 2016 Dec 21.

Abstract

In this work, plasmonic ternary ZnO/Ag/AgWO nanocomposites as efficient visible-light-driven photocatalysts prepared by a facile ultrasonic-irradiation method. The as-prepared samples were characterized by XRD, SEM, TEM, EDX, XPS, UV-vis DRS, FT-IR, and PL techniques. The photocatalytic performance of the prepared ZnO/Ag/AgWO nanocomposites were evaluated by photodegradations of rhodamine B, methylene blue, methyl orange, and fuchsine under visible-light irradiation. The optimal nanocomposite with 15wt% of Ag/AgWO to ZnO showed the highest photocatalytic activity for RhB degradation, which is about 95 and 19 times higher than those of the Ag/AgWO and ZnO samples, respectively. The highly enhanced activity of the ZnO/Ag/AgWO (15%) nanocomposite was attributed to the surface plasmon resonance effect of metallic silver and the formation of heterojunctions between the counterparts, which effectively suppresses recombination of the photogenerated charge carriers. Lastly, the plasmon-enhanced photocatalytic mechanism associated with the ZnO/Ag/AgWO nanocomposites was discussed.

摘要

在这项工作中,通过简便的超声辐射法制备了等离子体三元 ZnO/Ag/AgWO 纳米复合材料作为高效可见光驱动光催化剂。通过 XRD、SEM、TEM、EDX、XPS、UV-vis DRS、FT-IR 和 PL 技术对所制备的样品进行了表征。通过在可见光照射下光降解罗丹明 B、亚甲基蓝、甲基橙和碱性品红评估了制备的 ZnO/Ag/AgWO 纳米复合材料的光催化性能。具有 15wt%Ag/AgWO 对 ZnO 的最佳纳米复合材料对 RhB 降解表现出最高的光催化活性,分别比 Ag/AgWO 和 ZnO 样品高约 95 和 19 倍。ZnO/Ag/AgWO(15%)纳米复合材料的高活性归因于金属银的表面等离子体共振效应和对应物之间形成的异质结,这有效地抑制了光生载流子的复合。最后,讨论了与 ZnO/Ag/AgWO 纳米复合材料相关的等离子体增强光催化机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验