Suppr超能文献

结构核蛋白NuMA的高内涵图像信息学解析了干细胞/祖细胞谱系和致癌转化的轨迹。

High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

作者信息

Vega Sebastián L, Liu Er, Arvind Varun, Bushman Jared, Sung Hak-Joon, Becker Matthew L, Lelièvre Sophie, Kohn Joachim, Vidi Pierre-Alexandre, Moghe Prabhas V

机构信息

Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.

Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.

出版信息

Exp Cell Res. 2017 Feb 1;351(1):11-23. doi: 10.1016/j.yexcr.2016.12.018. Epub 2016 Dec 27.

Abstract

Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.

摘要

具有显著再生潜力且在癌症起始和进展中起关键作用的干细胞和祖细胞,仍然难以进行特征描述。细胞命运由细胞微环境与细胞核之间的相互信号传导决定;因此,源自核重塑的参数是用于干细胞/祖细胞特征描述的理想候选指标。在此,我们应用对核形状和组织的高内涵单细胞分析,来检测注定要分化为不同终点的干细胞和祖细胞,而这些细胞用传统方法难以区分。通过图像信息学定义的核描述符,对准备分化为脂肪细胞或成骨细胞的间充质干细胞,以及从大脑不同区域分离出来并注定分化为不同星形胶质细胞亚型的少突胶质细胞前体进行了分类。核描述符还揭示了化学致癌作用后干细胞的早期变化,从而能够鉴定出一类具有减轻癌症作用的生物材料。为了捕捉核变化的计量学特征,我们开发了一种简单且定量的“成像衍生”解析指数,该指数反映了核组织特征高维空间的动态演变。通过核形状或核结构蛋白NuMA的纹理度量对解析结果进行的比较分析表明,仅核形状是一种较弱的表型预测指标。相比之下,NuMA组织的变化解析出了新出现的细胞表型,并辨别出了干细胞转化的新出现阶段,支持了该蛋白在核功能结果中的预后作用。

相似文献

本文引用的文献

1
Current status in cancer cell reprogramming and its clinical implications.癌细胞重编程的现状及其临床意义。
J Cancer Res Clin Oncol. 2017 Mar;143(3):371-383. doi: 10.1007/s00432-016-2258-5. Epub 2016 Sep 12.
7
Stem cell therapy for osteoporosis.干细胞治疗骨质疏松症。
Curr Osteoporos Rep. 2014 Mar;12(1):41-7. doi: 10.1007/s11914-013-0184-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验