Bapst Victor, Coja-Oghlan Amin
Goethe University, Mathematics Institute Frankfurt 60325 Germany.
Random Struct Algorithms. 2016 Dec;49(4):694-741. doi: 10.1002/rsa.20692. Epub 2016 Oct 21.
A wide class of problems in combinatorics, computer science and physics can be described along the following lines. There are a large number of variables ranging over a finite domain that interact through constraints that each bind a few variables and either encourage or discourage certain value combinations. Examples include the -SAT problem or the Ising model. Such models naturally induce a Gibbs measure on the set of assignments, which is characterised by its partition function. The present paper deals with the partition function of problems where the interactions between variables and constraints are induced by a sparse random (hyper)graph. According to physics predictions, a generic recipe called the "replica symmetric cavity method" yields the correct value of the partition function if the underlying model enjoys certain properties [Krzkala et al., PNAS (2007) 10318-10323]. Guided by this conjecture, we prove general sufficient conditions for the success of the cavity method. The proofs are based on a "regularity lemma" for probability measures on sets of the form Ωn for a finite Ω and a large that may be of independent interest. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 694-741, 2016.
组合数学、计算机科学和物理学中的一大类问题可以按照以下思路来描述。存在大量取值于有限域的变量,这些变量通过约束相互作用,每个约束绑定少数几个变量,并鼓励或不鼓励某些值的组合。示例包括 -SAT 问题或伊辛模型。此类模型自然地在赋值集上诱导出一个吉布斯测度,其特征由其配分函数来表示。本文研究变量与约束之间的相互作用由稀疏随机(超)图诱导的问题的配分函数。根据物理学预测,如果基础模型具有某些性质,一种称为“复制对称腔方法”的通用方法会给出配分函数的正确值[Krzkala 等人,《美国国家科学院院刊》(2007 年)10318 - 10323]。受此猜想的引导,我们证明了腔方法成功的一般充分条件。证明基于对于有限的Ω和可能具有独立研究价值的大的 n,在形如Ωn 的集合上的概率测度的“正则性引理”。© 2016 威利期刊公司。《随机结构与算法》,49,694 - 741,2016 年。