Suppr超能文献

基于机器学习利用人体测量学指标预测寒证和热证

Prediction of cold and heat patterns using anthropometric measures based on machine learning.

作者信息

Lee Bum Ju, Lee Jae Chul, Nam Jiho, Kim Jong Yeol

机构信息

Medical Research Division, Korea Institute of Oriental Medicine, Deajeon, 305-811, Republic of Korea.

出版信息

Chin J Integr Med. 2018 Jan;24(1):16-23. doi: 10.1007/s11655-016-2641-8. Epub 2016 Dec 29.

Abstract

OBJECTIVE

To examine the association of body shape with cold and heat patterns, to determine which anthropometric measure is the best indicator for discriminating between the two patterns, and to investigate whether using a combination of measures can improve the predictive power to diagnose these patterns.

METHODS

Based on a total of 4,859 subjects (3,000 women and 1,859 men), statistical analyses using binary logistic regression were performed to assess the significance of the difference and the predictive power of each anthropometric measure, and binary logistic regression and Naive Bayes with the variable selection technique were used to assess the improvement in the predictive power of the patterns using the combined measures.

RESULTS

In women, the strongest indicators for determining the cold and heat patterns among anthropometric measures were body mass index (BMI) and rib circumference; in men, the best indicator was BMI. In experiments using a combination of measures, the values of the area under the receiver operating characteristic curve in women were 0.776 by Naive Bayes and 0.772 by logistic regression, and the values in men were 0.788 by Naive Bayes and 0.779 by logistic regression.

CONCLUSIONS

Individuals with a higher BMI have a tendency toward a heat pattern in both women and men. The use of a combination of anthropometric measures can slightly improve the diagnostic accuracy. Our findings can provide fundamental information for the diagnosis of cold and heat patterns based on body shape for personalized medicine.

摘要

目的

研究体型与寒热证型之间的关联,确定哪种人体测量指标是区分这两种证型的最佳指标,并探讨联合使用多种指标是否能提高诊断这些证型的预测能力。

方法

基于总共4859名受试者(3000名女性和1859名男性),采用二元逻辑回归进行统计分析,以评估各人体测量指标差异的显著性和预测能力,并使用带有变量选择技术的二元逻辑回归和朴素贝叶斯方法来评估联合使用多种指标时证型预测能力的提高情况。

结果

在女性中,人体测量指标中用于确定寒热证型的最强指标是体重指数(BMI)和胸围;在男性中,最佳指标是BMI。在联合使用多种指标的实验中,女性受试者中,朴素贝叶斯方法得到的受试者工作特征曲线下面积值为0.776,逻辑回归方法得到的为0.772;男性受试者中,朴素贝叶斯方法得到的为0.788,逻辑回归方法得到的为0.779。

结论

BMI较高的女性和男性都倾向于表现为热证型。联合使用人体测量指标可略微提高诊断准确性。我们的研究结果可为基于体型的寒热证型诊断提供基础信息,以实现个性化医疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验