Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, United States.
Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States.
J Phys Chem B. 2024 Apr 4;128(13):3090-3101. doi: 10.1021/acs.jpcb.3c07363. Epub 2024 Mar 26.
The basic packaging unit of eukaryotic chromatin is the nucleosome that contains 145-147 base pair duplex DNA wrapped around an octameric histone protein. While the DNA sequence plays a crucial role in controlling the positioning of the nucleosome, the molecular details behind the interplay between DNA sequence and nucleosome dynamics remain relatively unexplored. This study analyzes this interplay in detail by performing all-atom molecular dynamics simulations of nucleosomes, comparing the human α-satellite palindromic (ASP) and the strong positioning "Widom-601" DNA sequence at time scales of 12 μs. The simulations are performed at salt concentrations 10-20 times higher than physiological salt concentrations to screen the electrostatic interactions and promote unwrapping. These microsecond-long simulations give insight into the molecular-level sequence-dependent events that dictate the pathway of DNA unwrapping. We find that the "ASP" sequence forms a loop around SHL ± 5 for three sets of simulations. Coincident with loop formation is a cooperative increase in contacts with the neighboring N-terminal H2B tail and C-terminal H2A tail and the release of neighboring counterions. We find that the Widom-601 sequence exhibits a strong breathing motion of the nucleic acid ends. Coincident with the breathing motion is the collapse of the full N-terminal H3 tail and formation of an α-helix that interacts with the H3 histone core. We postulate that the dynamics of these histone tails and their modification with post-translational modifications (PTMs) may play a key role in governing this dynamics.
真核染色质的基本包装单元是核小体,它包含 145-147 个碱基对双链 DNA,缠绕在八聚体组蛋白蛋白周围。虽然 DNA 序列在控制核小体定位方面起着至关重要的作用,但 DNA 序列与核小体动力学之间相互作用的分子细节仍然相对未知。本研究通过对核小体进行全原子分子动力学模拟,详细分析了这种相互作用,比较了人类α卫星回文(ASP)和强定位“Widom-601”DNA 序列在 12 μs 的时间尺度上的相互作用。模拟在比生理盐浓度高 10-20 倍的盐浓度下进行,以筛选静电相互作用并促进解缠绕。这些微秒级的模拟深入了解了决定 DNA 解缠绕途径的分子水平序列依赖性事件。我们发现,“ASP”序列在三组模拟中围绕 SHL ± 5 形成一个环。环形成的同时,与相邻 N 端 H2B 尾巴和 C 端 H2A 尾巴的接触协同增加,并且相邻的反离子被释放。我们发现 Widom-601 序列表现出核酸末端的强烈呼吸运动。与呼吸运动同时发生的是完整的 N 端 H3 尾巴的崩溃和与 H3 组蛋白核心相互作用的α-螺旋的形成。我们推测,这些组蛋白尾巴的动力学及其与翻译后修饰(PTM)的修饰可能在控制这种动力学中发挥关键作用。