Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland; Zurich Life Science Graduate School, CH-8057 Zurich, Switzerland.
Gene Expression Analysis Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
Metab Eng. 2017 Sep;43(Pt B):173-186. doi: 10.1016/j.ymben.2016.12.009. Epub 2016 Dec 27.
We present an analysis of intracellular metabolism by non-targeted, high-throughput metabolomics profiling of 18 breast cell lines. We profiled >900 putatively annotated metabolite ions for >100 samples collected under both normoxic and hypoxic conditions and revealed extensive heterogeneity across all metabolic pathways and cell lines. Cell line-specific metabolome profiles dominated over patterns associated with malignancy or with the clinical nomenclature of breast cancer cells. Such characteristic metabolome profiles were reproducible across different laboratories and experiments and exhibited mild to robust changes with change in experimental conditions. To extract a functional overview of cell line heterogeneity, we devised an unsupervised metabotyping procedure that for each pathway automatically recognized metabolic types from metabolome data and assigned cell lines. Our procedure provided a condensed yet global representation of cell line metabolism, revealing the fine structure of metabolic heterogeneity across all tested pathways and cell lines. In follow-up experiments on selected pathways, we confirmed that different metabolic types correlated to differences in the underlying fluxes and difference sensitivity to gene knockdown or pharmacological inhibition. Thus, the identified metabotypes recapitulated functional differences at the pathway level. Metabotyping provides a powerful compression of multi-dimensional data that preserves functional information and serves as a resource for reconciling or understanding heterogeneous metabolic phenotypes or response to inhibition of metabolic pathways.
我们通过对 18 种乳腺细胞系进行非靶向、高通量代谢组学分析,对细胞内代谢进行了分析。我们在常氧和缺氧条件下收集了>100 个样本,对>900 个假定注释代谢物离子进行了分析,结果显示所有代谢途径和细胞系都存在广泛的异质性。细胞系特异性的代谢组图谱主导了与恶性肿瘤或乳腺癌细胞的临床命名相关的模式。这些特征性的代谢组图谱在不同的实验室和实验中具有重现性,并且随着实验条件的变化表现出轻度到强烈的变化。为了提取细胞系异质性的功能概述,我们设计了一种无监督的代谢分型程序,该程序可以自动从代谢组数据中识别每个途径的代谢类型,并对细胞系进行分配。我们的程序提供了细胞系代谢的简洁而全面的表示,揭示了所有测试途径和细胞系中代谢异质性的精细结构。在对选定途径的后续实验中,我们证实不同的代谢类型与潜在通量的差异以及对基因敲低或药物抑制的差异敏感性相关。因此,所鉴定的代谢类型再现了途径水平的功能差异。代谢分型提供了多维数据的强大压缩,保留了功能信息,并可作为协调或理解代谢途径的异质代谢表型或对代谢途径抑制的反应的资源。