McDaniel Dylan K, Jo Ami, Ringel-Scaia Veronica M, Coutermarsh-Ott Sheryl, Rothschild Daniel E, Powell Michael D, Zhang Rui, Long Timothy E, Oestreich Kenneth J, Riffle Judy S, Davis Richey M, Allen Irving C
Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
Nanomedicine. 2017 Apr;13(3):1255-1266. doi: 10.1016/j.nano.2016.12.015. Epub 2016 Dec 29.
Nanoparticle based drug delivery platforms have the potential to transform disease treatment paradigms and therapeutic strategies, especially in the context of pulmonary medicine. Once administered, nanoparticles disperse throughout the lung and many are phagocytosed by macrophages. However, there is a paucity of knowledge regarding cellular up-take dynamics of nanoparticles due largely to macrophage heterogeneity. To address this issue, we sought to better define nanoparticle up-take using polarized M1 and M2 macrophages and novel TIPS-pentacene loaded PEO-PDLLA nanoparticles. Our data reveal that primary macrophages polarized to either M1 or M2 phenotypes have similar levels of nanoparticle phagocytosis. Similarly, M1 and M2 polarized macrophages isolated from the lungs of mice following either acute (Th1) or allergic (Th2) airway inflammation also demonstrated equivalent levels of nanoparticle up-take. Together, these studies provide critical benchmark information pertaining to cellular up-take dynamics and biodistribution of nanoparticles in the context of clinically relevant inflammatory microenvironments.
基于纳米颗粒的药物递送平台有潜力改变疾病治疗模式和治疗策略,尤其是在肺部医学领域。纳米颗粒一旦给药,就会在肺部扩散,许多会被巨噬细胞吞噬。然而,由于巨噬细胞的异质性,关于纳米颗粒细胞摄取动力学的知识还很匮乏。为了解决这个问题,我们试图使用极化的M1和M2巨噬细胞以及新型负载并五苯的TIPS-聚环氧乙烷-聚乳酸纳米颗粒来更好地定义纳米颗粒的摄取。我们的数据显示,极化到M1或M2表型的原代巨噬细胞具有相似水平的纳米颗粒吞噬作用。同样,在急性(Th1)或过敏性(Th2)气道炎症后从小鼠肺部分离出的M1和M2极化巨噬细胞也表现出同等水平的纳米颗粒摄取。总之,这些研究提供了有关在临床相关炎症微环境中纳米颗粒细胞摄取动力学和生物分布的关键基准信息。