Pouliot Philippe, Gagnon Louis, Lam Tina, Avti Pramod K, Bowen Chris, Desjardins Michèle, Kakkar Ashok K, Thorin Eric, Sakadzic Sava, Boas David A, Lesage Frédéric
Department of Electrical Engineering, Ecole Polytechnique Montreal, Montreal, QC, Canada; Research Centre, Montreal Heart Institute, Montreal, Canada.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, MA, United States.
Neuroimage. 2017 Apr 1;149:436-445. doi: 10.1016/j.neuroimage.2016.12.060. Epub 2016 Dec 31.
Magnetic resonance fingerprinting (MRF) was recently proposed as a novel strategy for MR data acquisition and analysis. A variant of MRF called vascular MRF (vMRF) followed, that extracted maps of three parameters of physiological importance: cerebral oxygen saturation (SatO), mean vessel radius and cerebral blood volume (CBV). However, this estimation was based on idealized 2-dimensional simulations of vascular networks using random cylinders and the empirical Bloch equations convolved with a diffusion kernel. Here we focus on studying the vascular MR fingerprint using real mouse angiograms and physiological values as the substrate for the MR simulations. The MR signal is calculated ab initio with a Monte Carlo approximation, by tracking the accumulated phase from a large number of protons diffusing within the angiogram. We first study the identifiability of parameters in simulations, showing that parameters are fully estimable at realistically high signal-to-noise ratios (SNR) when the same angiogram is used for dictionary generation and parameter estimation, but that large biases in the estimates persist when the angiograms are different. Despite these biases, simulations show that differences in parameters remain estimable. We then applied this methodology to data acquired using the GESFIDE sequence with SPIONs injected into 9 young wild type and 9 old atherosclerotic mice. Both the pre injection signal and the ratio of post-to-pre injection signals were modeled, using 5-dimensional dictionaries. The vMRF methodology extracted significant differences in SatO, mean vessel radius and CBV between the two groups, consistent across brain regions and dictionaries. Further validation work is essential before vMRF can gain wider application.
磁共振指纹识别(MRF)最近被提出作为一种用于磁共振数据采集和分析的新策略。随后出现了一种名为血管MRF(vMRF)的MRF变体,它提取了三个具有生理重要性的参数图:脑氧饱和度(SatO)、平均血管半径和脑血容量(CBV)。然而,这种估计是基于使用随机圆柱体的血管网络的理想化二维模拟以及与扩散核卷积的经验布洛赫方程。在这里,我们专注于使用真实的小鼠血管造影照片和生理值作为磁共振模拟的基础来研究血管磁共振指纹。通过跟踪血管造影照片内大量扩散质子的累积相位,用蒙特卡罗近似从头计算磁共振信号。我们首先在模拟中研究参数的可识别性,结果表明,当使用相同的血管造影照片生成字典和估计参数时,在实际的高信噪比(SNR)下参数是完全可估计的,但当血管造影照片不同时,估计中会存在较大偏差。尽管存在这些偏差,但模拟表明参数差异仍然是可估计的。然后,我们将这种方法应用于使用GESFIDE序列采集的数据,该序列将超顺磁性氧化铁纳米颗粒(SPIONs)注入9只年轻野生型小鼠和9只老年动脉粥样硬化小鼠体内。使用五维字典对注射前信号以及注射后与注射前信号的比率进行建模。vMRF方法提取了两组之间SatO、平均血管半径和CBV的显著差异,在不同脑区和字典中均一致。在vMRF能够得到更广泛应用之前,进一步的验证工作至关重要。