Temiz Yuksel, Delamarche Emmanuel
IBM Research GmbH, Saumerstrasse 4, 8803, Rüschlikon, Switzerland.
Methods Mol Biol. 2017;1547:25-36. doi: 10.1007/978-1-4939-6734-6_2.
The fabrication of silicon-based microfluidic chips is invaluable in supporting the development of many microfluidic concepts for research in the life sciences and in vitro diagnostic applications such as the realization of miniaturized immunoassays using capillary-driven chips. While being extremely abundant, the literature covering microfluidic chip fabrication and assay development might not have addressed properly the challenge of fabricating microfluidic chips on a wafer level or the need for dicing wafers to release chips that need then to be further processed, cleaned, rinsed, and dried one by one. Here, we describe the "chip-olate" process wherein microfluidic structures are formed on a silicon wafer, followed by partial dicing, cleaning, and drying steps. Then, integration of reagents (if any) can be done, followed by lamination of a sealing cover. Breaking by hand the partially diced wafer yields individual chips ready for use.
硅基微流控芯片的制造对于支持许多用于生命科学研究和体外诊断应用的微流控概念的发展具有重要价值,例如使用毛细管驱动芯片实现小型化免疫测定。虽然关于微流控芯片制造和测定开发的文献极为丰富,但可能并未妥善解决在晶圆级制造微流控芯片的挑战,或者将晶圆切割以释放芯片的需求,而这些芯片随后需要逐一进行进一步处理、清洗、冲洗和干燥。在此,我们描述了“芯片巧克力”工艺,即在硅晶圆上形成微流控结构,随后进行部分切割、清洗和干燥步骤。然后,可以进行试剂(如果有的话)整合,接着层压密封盖。用手掰断部分切割的晶圆可得到随时可用的单个芯片。