Suppr超能文献

术后X光片中手术遗留针的计算机辅助检测

Computer-aided detection of retained surgical needles from postoperative radiographs.

作者信息

Sengupta Aunnasha, Hadjiiski Lubomir, Chan Heang-Ping, Cha Kenny, Chronis Nikolaos, Marentis Theodore C

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Med Phys. 2017 Jan;44(1):180-191. doi: 10.1002/mp.12011. Epub 2017 Jan 3.

Abstract

PURPOSE

Foreign objects, such as surgical sponges, needles, sutures, and other surgical instruments, retained in the patient's body can have dire consequences in terms of patient mortality as well as legal and financial penalties. We propose computer-aided detection (CAD) on postoperative radiographs as a potential solution to reduce the chance of retained foreign objects (RFOs) after surgery, thus alleviating one of the major concerns for patient safety in the operation room. A CAD system can function as a second pair of eyes or a prescreener for the surgeon and radiologist, depending on the CAD system design and the workflow. In this work, we focus on the detection of surgical needles on postoperative radiographs. As needles are frequently observed RFOs, a CAD system that can offer high sensitivity and specificity toward detecting surgical needles will be useful.

METHODS

Our CAD system incorporates techniques such as image segmentation, image enhancement, feature analysis, and curve fitting to detect surgical needles on radiographs. A dataset consisting of 108 cadaver images with a total of 116 needles and 100 cadaver "normal" images without needles was acquired with a portable digital x-ray system. A reference standard was obtained by marking the needle locations using an in-house developed graphical user interface. The 108 cadaver images with the needles were partitioned into a training set containing 53 cadaver images with 59 needles and a test set containing 55 cadaver images with 57 needles. All of the 100 cadaver normal images were reserved as a part of the test set and used to estimate the false-positive detection rate. Two operating points were chosen from the CAD system such that it can be operated in two modes, one with higher specificity (mode I) and the other with higher sensitivity (mode II).

RESULTS

For the training set, the CAD system with the rule-based classifier achieved a sensitivity of 74.6% with 0.15 false positives per image (FPs/image) in mode I and a sensitivity of 89.8% with 0.36 FPs/image in mode II. For the test set, the CAD system achieved a sensitivity of 77.2% with 0.26 FPs/image in mode I and a sensitivity of 84.2% with 0.6 FPs/image in mode II. For comparison, the CAD system with the neural network classifier achieved a sensitivity of 74.6% with 0.08 FPs/image in mode I and a sensitivity of 88.1% with 0.28 FPs/image in mode II for the training set, and a sensitivity of 75.4% with 0.23 FPs/image in mode I and a sensitivity of 86.0% with 0.57 FPs/image in mode II for the test set.

CONCLUSION

A novel CAD system has been developed for automated detection of needles inadvertently left behind in a patient's body from postsurgery radiographs. The pilot system offers reasonable performance in both the high sensitivity and high specificity modes. This preliminary study shows the promise of CAD as a low-cost and efficient aid for reducing retained surgical needles in patients.

摘要

目的

遗留在患者体内的异物,如手术海绵、针头、缝线和其他手术器械,会对患者死亡率以及法律和经济处罚产生严重后果。我们提出在术后X光片上进行计算机辅助检测(CAD),作为一种潜在的解决方案,以降低手术后遗留异物(RFO)的几率,从而缓解手术室中患者安全的一大主要担忧。根据CAD系统的设计和工作流程,CAD系统可以充当外科医生和放射科医生的另一双眼睛或预筛查工具。在这项工作中,我们专注于在术后X光片上检测手术针。由于针是常见的RFO,一个能够对检测手术针具有高灵敏度和特异性的CAD系统将很有用。

方法

我们的CAD系统采用图像分割、图像增强、特征分析和曲线拟合等技术来检测X光片上的手术针。使用便携式数字X射线系统获取了一个数据集,其中包括108张尸体图像,共有116根针,以及100张没有针的尸体“正常”图像。通过使用内部开发的图形用户界面标记针的位置获得了参考标准。将108张有针的尸体图像划分为一个训练集,包含53张有59根针的尸体图像,以及一个测试集,包含55张有57根针的尸体图像。所有100张尸体正常图像都保留作为测试集的一部分,并用于估计假阳性检测率。从CAD系统中选择了两个操作点,使其可以在两种模式下运行,一种具有更高的特异性(模式I),另一种具有更高的灵敏度(模式II)。

结果

对于训练集,基于规则分类器的CAD系统在模式I下实现了74.6%的灵敏度,每张图像有0.15个假阳性(FPs/图像),在模式II下实现了89.8%的灵敏度,每张图像有0.36个FPs/图像。对于测试集,CAD系统在模式I下实现了77.2%的灵敏度,每张图像有0.26个FPs/图像,在模式II下实现了84.2%的灵敏度,每张图像有0.6个FPs/图像。作为比较,基于神经网络分类器的CAD系统在训练集的模式I下实现了74.6%的灵敏度,每张图像有0.08个FPs/图像,在模式II下实现了88.1%的灵敏度,每张图像有0.28个FPs/图像,在测试集的模式I下实现了75.4%的灵敏度,每张图像有0.23个FPs/图像,在模式II下实现了86.0%的灵敏度,每张图像有0.57个FPs/图像。

结论

已开发出一种新型CAD系统,用于从术后X光片中自动检测无意中遗留在患者体内的针。该试验系统在高灵敏度和高特异性模式下均表现出合理的性能。这项初步研究表明CAD有望成为一种低成本、高效的辅助手段,用于减少患者体内遗留的手术针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验