Suppr超能文献

使用机器学习和深度学习技术减少手术遗留物品的发生:综述

Minimization of occurrence of retained surgical items using machine learning and deep learning techniques: a review.

作者信息

Abo-Zahhad Mohammed, El-Malek Ahmed H Abd, Sayed Mohammed S, Gitau Susan Njeri

机构信息

Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt.

Department of Electrical and Electronics Engineering, Assiut University, Assiut, Egypt.

出版信息

BioData Min. 2024 Jun 18;17(1):17. doi: 10.1186/s13040-024-00367-z.

Abstract

Retained surgical items (RSIs) pose significant risks to patients and healthcare professionals, prompting extensive efforts to reduce their incidence. RSIs are objects inadvertently left within patients' bodies after surgery, which can lead to severe consequences such as infections and death. The repercussions highlight the critical need to address this issue. Machine learning (ML) and deep learning (DL) have displayed considerable potential for enhancing the prevention of RSIs through heightened precision and decreased reliance on human involvement. ML techniques are finding an expanding number of applications in medicine, ranging from automated imaging analysis to diagnosis. DL has enabled substantial advances in the prediction capabilities of computers by combining the availability of massive volumes of data with extremely effective learning algorithms. This paper reviews and evaluates recently published articles on the application of ML and DL in RSIs prevention and diagnosis, stressing the need for a multi-layered approach that leverages each method's strengths to mitigate RSI risks. It highlights the key findings, advantages, and limitations of the different techniques used. Extensive datasets for training ML and DL models could enhance RSI detection systems. This paper also discusses the various datasets used by researchers for training the models. In addition, future directions for improving these technologies for RSI diagnosis and prevention are considered. By merging ML and DL with current procedures, it is conceivable to substantially minimize RSIs, enhance patient safety, and elevate surgical care standards.

摘要

手术遗留物品(RSIs)对患者和医护人员构成重大风险,促使人们为降低其发生率做出广泛努力。RSIs是手术后无意中留在患者体内的物品,可能导致感染和死亡等严重后果。这些后果凸显了解决这一问题的迫切需求。机器学习(ML)和深度学习(DL)通过提高精度和减少对人工干预的依赖,在加强RSIs预防方面显示出巨大潜力。ML技术在医学中的应用越来越广泛,从自动成像分析到诊断。DL通过将大量数据的可用性与极其有效的学习算法相结合,在计算机预测能力方面取得了重大进展。本文回顾并评估了最近发表的关于ML和DL在RSIs预防和诊断中的应用的文章,强调需要一种多层次方法,利用每种方法的优势来降低RSI风险。它突出了所使用的不同技术的关键发现、优点和局限性。用于训练ML和DL模型的广泛数据集可以增强RSI检测系统。本文还讨论了研究人员用于训练模型的各种数据集。此外,还考虑了改进这些技术以用于RSI诊断和预防的未来方向。通过将ML和DL与当前程序相结合,可以大幅减少RSIs,提高患者安全性,并提升手术护理标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691c/11184833/5a1bd63d7205/13040_2024_367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验