International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, People's Republic of China.
Nanotechnology. 2017 Feb 24;28(8):084002. doi: 10.1088/1361-6528/aa5642. Epub 2017 Jan 3.
Developing type-II heterostructures with a spatial separation of photoexcited electrons and holes is a useful route to promote photocatalytic hydrogen generation. However, few investigations on the charge transfer process across the heterojunction have been carried out, which can allow us to uncover the reaction mechanism. Herein, CdSe quantum dots (QDs) and TiO nanocrystals were synthesized and combined in water yielding CdSe/TiO type II heterostructures. It was found that mercaptopropionic acid as bifunctional molecules could bind with CdSe and TiO to form a cross-linked morphology. The charge carrier dynamics of bare CdSe and CdSe/TiO were detected using femtosecond transient absorption spectroscopy. In the presence of TiO, the average exciton lifetime of CdSe QDs was apparently decreased, owing to the electron transfer from photoexcited CdSe to TiO. Particularly, the electron-transfer rate from small CdSe QDs (3.0 nm) was much faster than that from big CdSe QDs (4.2 nm). The improved photocatalytic hydrogen generation was observed for CdSe/TiO compared to bare CdSe QDs. The enhancement factor for small CdSe QDs was higher than that for big CdSe QDs, which was in good agreement with the electron-transfer rates. This result indicated that the electron transfer between CdSe and TiO played an important role in photocatalytic hydrogen generation on CdSe/TiO type-II heterostructure. Our study provides a fundamental guidance to construct efficient heterostructured photocatalysts by delicate control of the band alignment.
开发具有光激发电子和空穴空间分离的 II 型异质结构是促进光催化制氢的有效途径。然而,对于跨越异质结的电荷转移过程的研究很少,这可以使我们揭示反应机制。在此,合成了 CdSe 量子点 (QD) 和 TiO 纳米晶体,并在水中结合生成了 CdSe/TiO II 型异质结构。结果发现,巯基丙酸作为双功能分子可以与 CdSe 和 TiO 结合形成交联形态。使用飞秒瞬态吸收光谱检测了 bare CdSe 和 CdSe/TiO 的载流子动力学。在 TiO 的存在下,由于光激发的 CdSe 向 TiO 的电子转移,CdSe QD 的平均激子寿命明显降低。特别地,小 CdSe QD(3.0nm)的电子转移速率比大 CdSe QD(4.2nm)快得多。与 bare CdSe QDs 相比,CdSe/TiO 表现出了更好的光催化制氢性能。小 CdSe QDs 的增强因子高于大 CdSe QDs,这与电子转移速率一致。该结果表明,在 CdSe/TiO II 型异质结构上的光催化制氢过程中,CdSe 和 TiO 之间的电子转移起着重要作用。我们的研究通过精细控制能带排列为构建高效的异质结构光催化剂提供了基本指导。