Suppr超能文献

Q|R:基于量子的精修。

Q|R: quantum-based refinement.

作者信息

Zheng Min, Reimers Jeffrey R, Waller Mark P, Afonine Pavel V

机构信息

Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, People's Republic of China.

出版信息

Acta Crystallogr D Struct Biol. 2017 Jan 1;73(Pt 1):45-52. doi: 10.1107/S2059798316019847.

Abstract

Quantum-based refinement utilizes chemical restraints derived from quantum-chemical methods instead of the standard parameterized library-based restraints used in refinement packages. The motivation is twofold: firstly, the restraints have the potential to be more accurate, and secondly, the restraints can be more easily applied to new molecules such as drugs or novel cofactors. Here, a new project called Q|R aimed at developing quantum-based refinement of biomacromolecules is under active development by researchers at Shanghai University together with PHENIX developers. The central focus of this long-term project is to develop software that is built on top of open-source components. A development version of Q|R was used to compare quantum-based refinements with standard refinement using a small model system.

摘要

基于量子的精修利用从量子化学方法衍生而来的化学约束,而非精修软件包中使用的基于标准参数化库的约束。其动机有两方面:其一,这些约束有可能更准确;其二,这些约束能够更轻松地应用于新分子,如药物或新型辅因子。在此,上海大学的研究人员与PHENIX开发者正在积极开展一个名为Q|R的新项目,旨在开发基于量子的生物大分子精修方法。这个长期项目的核心重点是开发基于开源组件构建的软件。使用Q|R的一个开发版本,通过一个小型模型系统将基于量子的精修与标准精修进行了比较。

相似文献

1
Q|R: quantum-based refinement.
Acta Crystallogr D Struct Biol. 2017 Jan 1;73(Pt 1):45-52. doi: 10.1107/S2059798316019847.
2
Quantum refinement in real and reciprocal space using the Phenix and ORCA software.
IUCrJ. 2024 Nov 1;11(Pt 6):921-937. doi: 10.1107/S2052252524008406.
3
Real-space quantum-based refinement for cryo-EM: Q|R#3.
Acta Crystallogr D Struct Biol. 2020 Dec 1;76(Pt 12):1184-1191. doi: 10.1107/S2059798320013194. Epub 2020 Nov 19.
4
Solving the scalability issue in quantum-based refinement: Q|R#1.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1020-1028. doi: 10.1107/S2059798317016746. Epub 2017 Nov 30.
5
Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
Acta Crystallogr D Struct Biol. 2016 Sep;72(Pt 9):1062-72. doi: 10.1107/S2059798316012225. Epub 2016 Aug 31.
6
AQuaRef: Machine learning accelerated quantum refinement of protein structures.
bioRxiv. 2024 Jul 21:2024.07.21.604493. doi: 10.1101/2024.07.21.604493.
8
Including crystallographic symmetry in quantum-based refinement: Q|R#2.
Acta Crystallogr D Struct Biol. 2020 Jan 1;76(Pt 1):41-50. doi: 10.1107/S2059798319015122.
9
Programming new geometry restraints: parallelity of atomic groups.
J Appl Crystallogr. 2015 Jul 8;48(Pt 4):1130-1141. doi: 10.1107/S1600576715010432. eCollection 2015 Aug 1.
10
Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
Acta Crystallogr D Biol Crystallogr. 2005 Mar;61(Pt 3):322-32. doi: 10.1107/S0907444904033669. Epub 2005 Feb 24.

引用本文的文献

1
Quantum refinement in real and reciprocal space using the Phenix and ORCA software.
IUCrJ. 2024 Nov 1;11(Pt 6):921-937. doi: 10.1107/S2052252524008406.
2
AQuaRef: Machine learning accelerated quantum refinement of protein structures.
bioRxiv. 2024 Jul 21:2024.07.21.604493. doi: 10.1101/2024.07.21.604493.
3
Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase.
Acta Crystallogr D Struct Biol. 2020 Nov 1;76(Pt 11):1145-1156. doi: 10.1107/S2059798320012917. Epub 2020 Oct 16.
4
The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
J Comput Aided Mol Des. 2021 Apr;35(4):433-451. doi: 10.1007/s10822-020-00354-6. Epub 2020 Oct 27.
5
fragHAR: towards quantum-crystallographic X-ray structure refinement for polypeptides and proteins.
IUCrJ. 2020 Jan 17;7(Pt 2):158-165. doi: 10.1107/S2052252519015975. eCollection 2020 Mar 1.
6
Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877. doi: 10.1107/S2059798319011471. Epub 2019 Oct 2.
7
Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data.
Acta Crystallogr D Struct Biol. 2019 Apr 1;75(Pt 4):368-380. doi: 10.1107/S205979831900175X. Epub 2019 Mar 28.
9
Solving the scalability issue in quantum-based refinement: Q|R#1.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1020-1028. doi: 10.1107/S2059798317016746. Epub 2017 Nov 30.

本文引用的文献

5
Programming new geometry restraints: parallelity of atomic groups.
J Appl Crystallogr. 2015 Jul 8;48(Pt 4):1130-1141. doi: 10.1107/S1600576715010432. eCollection 2015 Aug 1.
6
Protein structure refinement by optimization.
Proteins. 2015 Sep;83(9):1616-24. doi: 10.1002/prot.24846. Epub 2015 Jul 21.
7
Single-Particle Cryo-EM at Crystallographic Resolution.
Cell. 2015 Apr 23;161(3):450-457. doi: 10.1016/j.cell.2015.03.049.
8
How cryo-EM is revolutionizing structural biology.
Trends Biochem Sci. 2015 Jan;40(1):49-57. doi: 10.1016/j.tibs.2014.10.005. Epub 2014 Nov 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验