Max Planck Institute for Solid State Research , Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
Institut de Physique, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.
ACS Nano. 2017 Jan 24;11(1):1034-1040. doi: 10.1021/acsnano.6b07737. Epub 2017 Jan 10.
Raman scattering is a powerful tool for investigating the vibrational properties of two-dimensional materials. Unlike the 2H phase of many transition metal dichalcogenides, the 1T phase of TiSe features a Raman-active shearing and breathing mode, both of which shift toward lower energy with increasing number of layers. By systematically studying the Raman signal of 1T-TiSe in dependence of the sheet thickness, we demonstrate that the charge density wave transition of this compound can be reliably determined from the temperature dependence of the peak position of the E mode near 136 cm. The phase transition temperature is found to first increase with decreasing thickness of the sheets, followed by a decrease due to the effect of surface oxidation. The Raman spectroscopy-based method is expected to be applicable also to other 1T-phase transition metal dichalcogenides featuring a charge density wave transition and represents a valuable complement to electrical transport-based approaches.
拉曼散射是研究二维材料振动特性的有力工具。与许多过渡金属二卤化物的 2H 相不同,TiSe 的 1T 相具有拉曼活性的剪切和呼吸模式,这两种模式随着层数的增加而向更低的能量移动。通过系统地研究 1T-TiSe 的拉曼信号与薄片厚度的关系,我们证明可以通过 136cm 附近 E 模式峰位的峰值位置随温度的变化来可靠地确定该化合物的电荷密度波转变。发现相转变温度首先随薄片厚度的减小而增加,然后由于表面氧化的影响而减小。基于拉曼光谱的方法有望也适用于具有电荷密度波转变的其他 1T 相过渡金属二卤化物,是对基于电输运方法的有价值的补充。