Bayart Emilie, Pouzoulet Frédéric, Calmels Lucie, Dadoun Jonathan, Allot Fabien, Plagnard Johann, Ravanat Jean-Luc, Bridier André, Denozière Marc, Bourhis Jean, Deutsch Eric
INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
Plateforme de Radiothérapie Expérimentale, Département de Recherche Translationnelle, Institut Curie, Orsay, France.
PLoS One. 2017 Jan 3;12(1):e0168395. doi: 10.1371/journal.pone.0168395. eCollection 2017.
Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 μM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.
低能X射线通过光电吸收作用于用5-碘-2'-脱氧尿苷(IUdR)标记的细胞DNA中的碘,从而引发俄歇电子级联反应。这种光激活疗法可增强细胞对辐射的敏感性,在50 keV光子时达到最大值。同步加速器核心设施是产生这种单色光束的唯一途径。然而,这些设施并不适合常规的患者治疗。在本研究中,我们从传统的225 kV X射线源产生了两束分别发射平均光子能量为42 keV和50 keV的光束。在预先暴露于10 μM的IUdR 48小时后进行的活力测定表明,与137Cs照射(662 keV)相比,低能光子照射后会产生复杂的致死性损伤。为了进一步解读导致IUdR介导的放射增敏作用的分子机制,我们分析了两种胶质母细胞瘤细胞系中DNA损伤诱导灶的含量,并表明在这些条件下细胞存活率的降低与细胞系中DNA损伤诱导灶含量的增加相关。此外,对诱导的双链断裂修复动力学的跟踪显示,用IUdR标记并暴露于X射线照射的细胞中延迟最大。因此,辐射存活参数的降低与DNA损伤的产生以及这些断裂修复受损之间似乎存在直接关系。这些结果进一步支持了卤化嘧啶类似物与低能X射线疗法联合使用的临床潜在用途。