Leibowitz S F, Diaz S, Tempel D
Rockefeller University, New York, NY 10021.
Brain Res. 1989 Sep 4;496(1-2):219-27. doi: 10.1016/0006-8993(89)91069-x.
Hypothalamic cells containing corticotropin-releasing factor are believed to be densely innervated by noradrenergic terminals. However, the role of norepinephrine (NE) in the control of the hypothalamo-pituitary-adrenal axis has remained undefined, with both excitatory and inhibitory effects suggested by the literature. The present experiments tested the effects of direct hypothalamic infusion of NE on the release of corticosterone (CORT) in awake and freely moving rats. Norepinephrine infusion into the paraventricular nucleus (PVN) produced a dose-dependent increase in circulating levels of CORT. In a mapping study, this stimulatory effect of NE was found to be anatomically localized. The strongest rise in CORT levels (up to 12 micrograms%) was observed after injection into the PVN, where NE acted in a dose-dependent fashion. A somewhat smaller effect was also detected with NE in the dorsomedial nucleus, while no response occurred after injection just dorsal to the PVN, into the ventromedial or supraoptic nuclei, or into the lateral or posterior hypothalamus. Serotonin infusion into the PVN produced a small but statistically reliable increase in circulating CORT levels. However, dopamine injection into this nucleus had no observable effect. These results agree with recent studies suggesting an excitatory function of PVN NE in the pituitary-adrenal axis.