Mansur Alexandra A P, de Carvalho Fernanda G, Mansur Rafael L, Carvalho Sandhra M, de Oliveira Luiz Carlos, Mansur Herman S
Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil.
Department of Chemistry, Federal University of Minas Gerais, Brazil.
Int J Biol Macromol. 2017 Mar;96:675-686. doi: 10.1016/j.ijbiomac.2016.12.078. Epub 2016 Dec 31.
In this study, it is reported the use of sodium carboxymethyl cellulose (CMCel) as a multifunctional biocompatible polysaccharide for the direct synthesis of fluorescent alloyed-ZnCdS quantum dot (QD) nanoconjugates via aqueous "green" process at room temperature. The nanoconjugates were extensively characterized by spectroscopical (NMR, FTIR, UV-vis, PL) and morphological techniques (DLS, TEM) for accessing their structural and physicochemical properties associated with X-ray photoelectron spectroscopy (XPS) for surface and interface analysis. The results proved the hypothesis of formation of core-shell nanostructures composed by the semiconductor ZnCdS QD core and the organic biocompatible ligand CMCel shell. Moreover, CMCel chemical functional groups played a pivotal role for controlling the size of water-soluble colloidal nanocrystals (2r=4-5nm) and hydrodynamic diameters (<15nm) evidenced by metal complexation and interactions at the nanointerfaces. Additionally, these nanoconjugates were cytocompatible and luminescent for bioimaging human osteosarcoma cancer cells. Thus, these novel polysaccharide-based fluorescent bioconjugates offer promising perspectives as nanoplatforms for cancer cell bioimaging and diagnosis purposes.
在本研究中,报道了使用羧甲基纤维素钠(CMCel)作为多功能生物相容性多糖,通过室温下的水相“绿色”工艺直接合成荧光合金化ZnCdS量子点(QD)纳米共轭物。通过光谱技术(NMR、FTIR、UV-vis、PL)和形态学技术(DLS、TEM)对纳米共轭物进行了广泛表征,以了解其与用于表面和界面分析的X射线光电子能谱(XPS)相关的结构和物理化学性质。结果证实了由半导体ZnCdS QD核和有机生物相容性配体CMCel壳组成的核壳纳米结构形成的假设。此外,CMCel化学官能团在控制水溶性胶体纳米晶体的尺寸(2r = 4 - 5nm)和流体动力学直径(<15nm)方面起着关键作用,这通过纳米界面处的金属络合和相互作用得到证明。此外,这些纳米共轭物对人骨肉瘤癌细胞具有细胞相容性和发光性,可用于生物成像。因此,这些新型的基于多糖的荧光生物共轭物作为用于癌细胞生物成像和诊断目的的纳米平台具有广阔的前景。