Leonel Alice G, Mansur Alexandra A P, Carvalho Sandhra M, Outon Luis Eugenio F, Ardisson José Domingos, Krambrock Klaus, Mansur Herman S
Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil
Nanoscale Adv. 2021 Jan 4;3(4):1029-1046. doi: 10.1039/d0na00820f. eCollection 2021 Feb 23.
Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (FeO, MION) and cobalt-doped magnetite (Co -MION, = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in FeO nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays . The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co FeO) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.
由于具有独特的物理化学和磁性特性,磁铁矿纳米颗粒是用于热疗应用的最有前途的铁磁流体之一。在本研究中,我们通过一种环保的水相方法,使用羧甲基纤维素(CMC)作为生物相容性大分子配体,设计并制备了由磁铁矿(FeO,MION)和钴掺杂磁铁矿(Co-MION,钴含量为3%、5%和10%摩尔)纳米共轭物组成的超顺磁性铁磁流体。使用XRD、XRF、XPS、FTIR、DLS、zeta电位、EMR和VSM分析,深入研究了FeO纳米胶体中钴含量逐渐增加的影响。此外,通过MTT试验评估了这些纳米共轭物的细胞毒性及其通过热诱导导致癌细胞死亡的能力。结果表明,在磁铁矿主体材料中逐步取代Co对铁磁流体的磁各向异性特性有显著影响。因此,在用人脑癌细胞(U87)进行的交变磁场磁热疗实验中,钴掺杂铁氧体(CoFeO)纳米共轭物增强了细胞杀伤活性。另一方面,Co掺杂过程保留了MIONs的原始反尖晶石晶体结构,并且没有显著改变平均纳米颗粒尺寸(约7.1±1.6nm)。因此,将钴掺入磁铁矿-聚合物纳米结构中可能构成一种智能策略,通过产热来调节其磁热能力以用于癌症治疗。