Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette 47907, USA.
Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907, USA.
J Control Release. 2017 Oct 10;263:90-101. doi: 10.1016/j.jconrel.2016.12.040. Epub 2016 Dec 31.
Nanoparticles are used to deliver anticancer drugs to solid tumors. However, clinical development of nanoparticles is challenging because of their limitations in physicochemical properties, such as low drug loading efficiency and poor circulation stability. Low drug loading not only causes technical difficulty in administration but also increases the amount of co-delivered carrier materials, imposing biological burdens to patients. Poor circulation stability causes loss of pharmacokinetics benefits of nanoparticles. To overcome these challenges, we developed an albumin-coated nanocrystal (NC) formulation of paclitaxel (PTX) with 90% drug loading and high serum stability. The NC was produced by inducing crystallization of PTX in aqueous medium, coating the surface with albumin, and removing extra non-drug ingredients. Among three types of NC produced with different crystallization conditions, NC crystallized in the medium containing Pluronic F-127 then coated with albumin ("Cim-F-alb") had the smallest size and the most native albumin, thus showing the most favorable cell interaction profiles (low uptake by J774A.1 macrophages and high uptake by SPARC B16F10 melanoma cells). Cim-F-alb remained more stable in undiluted serum than Abraxane, a commercial albumin-based PTX nanoparticle formulation, while maintaining comparable cytotoxicity to those of Abraxane and solvent-dissolved PTX. In a mouse model of B16F10 melanoma, Cim-F-alb showed higher antitumor efficacy than Abraxane at the same dose. This study demonstrates the feasibility and benefits of delivering an anticancer drug using a carrier-free nanoparticle formulation with good circulation stability.
纳米颗粒被用于将抗癌药物递送至实体瘤。然而,由于其理化性质的限制,如载药效率低和循环稳定性差,纳米颗粒的临床开发具有挑战性。载药效率低不仅导致给药技术上的困难,还会增加共递载材料的量,给患者带来生物学负担。循环稳定性差导致纳米颗粒的药代动力学优势丧失。为了克服这些挑战,我们开发了一种载药效率为 90%且具有高血清稳定性的紫杉醇(PTX)白蛋白包覆纳米晶体(NC)制剂。NC 是通过在水介质中诱导 PTX 结晶、用白蛋白包覆表面并去除多余的非药物成分来制备的。在使用三种不同结晶条件制备的三种 NC 中,在含有 Pluronic F-127 的介质中结晶然后用白蛋白包覆的 NC(“Cim-F-alb”)具有最小的尺寸和最多的天然白蛋白,因此表现出最有利的细胞相互作用特征(被 J774A.1 巨噬细胞摄取较少,被 SPARC B16F10 黑色素瘤细胞摄取较多)。与商品化的白蛋白结合型 PTX 纳米颗粒制剂 Abraxane 相比,Cim-F-alb 在未稀释的血清中更稳定,同时保持与 Abraxane 和溶剂溶解的 PTX 相当的细胞毒性。在 B16F10 黑色素瘤小鼠模型中,与相同剂量的 Abraxane 相比,Cim-F-alb 显示出更高的抗肿瘤疗效。这项研究证明了使用具有良好循环稳定性的无载体纳米颗粒制剂递送抗癌药物的可行性和益处。