State Key Laboratory for Power Metallurgy, Central South University, Changsha 410083, China.
State Key Laboratory for Power Metallurgy, Central South University, Changsha 410083, China.
J Colloid Interface Sci. 2017 Apr 1;491:279-285. doi: 10.1016/j.jcis.2016.12.020. Epub 2016 Dec 18.
Carbon encapsulated nanosheet-assembled MoSe hollow nanospheres were in situ fabricated via a facile hydrothermal treatment and subsequent annealing treatment. When evaluated as anode material for lithium-ion batteries, the MoSe/C hybrid hollow spheres manifest prodigious cycling stability (a high reversible capacity of 795mAhg after 250 cycles at 0.2Ag and 744mAhg after 300 cycles at 1Ag) and compelling rate capability (370mAhg even at a high current density of 10Ag) compared to the bare MoSe hollow nanospheres. The impressive lithium storage properties of the as-prepared MoSe/C nanocomposites can be attributed to the introduction of glucose-derived conductive carbon and the design of hollow structure, which facilitates fast electron and ion transfer, relieves the stress caused by volume variation upon cycling and improves the electric conductivity. Such remarkable electrochemical performances together with universal approach endow this material with potential application for next generation lithium-ion batteries.
通过简便的水热法和随后的退火处理,原位制备了碳封装纳米片组装的 MoSe 空心纳米球。当作为锂离子电池的阳极材料进行评估时,MoSe/C 杂化空心球表现出出色的循环稳定性(在 0.2Ag 下 250 次循环后具有 795mAhg 的高可逆容量,在 1Ag 下 300 次循环后具有 744mAhg 的高可逆容量)和令人瞩目的倍率性能(即使在 10Ag 的高电流密度下也具有 370mAhg 的容量)。与裸 MoSe 空心纳米球相比,所制备的 MoSe/C 纳米复合材料的优异锂存储性能可归因于葡萄糖衍生的导电碳和空心结构的设计,这有利于快速电子和离子转移,缓解了循环过程中体积变化引起的应力,并提高了电导率。这种显著的电化学性能以及通用的方法使这种材料具有用于下一代锂离子电池的潜在应用。