Suppr超能文献

具有增强锂存储性能的氮掺杂碳包覆MoSe微球的构建

Construction of Nitrogen-Doped Carbon-Coated MoSe Microspheres with Enhanced Performance for Lithium Storage.

作者信息

Tang Wangjia, Xie Dong, Shen Tong, Wang Xiuli, Wang Donghuang, Zhang Xuqing, Xia Xinhui, Wu Jianbo, Tu Jiangping

机构信息

State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.

Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China.

出版信息

Chemistry. 2017 Sep 18;23(52):12924-12929. doi: 10.1002/chem.201702840. Epub 2017 Aug 21.

Abstract

Exploring advanced anode materials with highly reversible capacity have gained great interests for large-scale lithium storage. A facile two-step method is developed to synthesize nitrogen-doped carbon coated MoSe microspheres via hydrothermal plus thermal polymerization. The MoSe microspheres composed of interconnected nanoflakes are homogeneously coated by a thin nitrogen-doped carbon (N-C) layer. As an anode for lithium ion batteries, the MoSe /N-C composite shows better reversibility, smaller polarization, and higher electrochemical reactivity as compared to the unmodified MoSe microspheres. The MoSe /N-C electrode delivers a high specific capacity of 698 mAh g after 100 cycles at a current density of 100 mA g and good high rate performance (471 mAh g at a high current density of 2000 mA g ). The improved electrochemical performance is attributed to the conductive N-C coating and hierarchical microsphere structure with fast ion/electron transfer characteristics.

摘要

探索具有高可逆容量的先进阳极材料对于大规模锂存储具有极大的吸引力。开发了一种简便的两步法,通过水热法和热聚合反应合成氮掺杂碳包覆的MoSe微球。由相互连接的纳米片组成的MoSe微球被一层薄的氮掺杂碳(N-C)层均匀包覆。作为锂离子电池的阳极,与未改性的MoSe微球相比,MoSe/N-C复合材料表现出更好的可逆性、更小的极化和更高的电化学反应活性。MoSe/N-C电极在100 mA g的电流密度下循环100次后,具有698 mAh g的高比容量和良好的高倍率性能(在2000 mA g的高电流密度下为471 mAh g)。电化学性能的改善归因于具有快速离子/电子传输特性的导电N-C涂层和分级微球结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验