Audet-Delage Yannick, Rouleau Michèle, Rouleau Mélanie, Roberge Joannie, Miard Stéphanie, Picard Frédéric, Têtu Bernard, Guillemette Chantal
Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada.
Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
Mol Pharmacol. 2017 Mar;91(3):167-177. doi: 10.1124/mol.116.106161. Epub 2017 Jan 3.
Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function as a complex protein network connecting other metabolic pathways with an influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues-namely, the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by coimmunoprecipitation in the HT115 colon cancer cells and was supported by a partial colocalization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect, with a higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites, including many intermediates derived from the glycolysis and tricarboxylic acid cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2 mRNA in colon tumors compared with normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity.
人葡萄糖醛酸基转移酶1基因座(UGT1)的可变剪接产生了可变异构体UGT1A_i2s,其通过蛋白质-蛋白质相互作用来控制葡萄糖醛酸化活性。在此,我们假设UGT1A_i2s作为一个复杂的蛋白质网络发挥作用,该网络将其他代谢途径与癌细胞代谢联系起来并产生影响。这是基于蛋白质组学数据的通路富集分析得出的,该分析确定了人组织中UGT1A_i2蛋白质的几种高可信度候选相互作用蛋白,即糖酵解限速酶丙酮酸激酶(PKM),它在癌细胞代谢和肿瘤生长中起关键作用。通过在HT115结肠癌细胞中的免疫共沉淀证实了UGT1A_i2和PKM2之间的伙伴关系,并且这两种蛋白质的部分共定位也支持了这一点。为了支持这种伙伴关系的功能作用,HT115细胞中UGT1A_i2蛋白质的缺失增强了瓦伯格效应,以线粒体呼吸为代价提高了糖酵解速率,并导致乳酸积累。非靶向代谢组学进一步揭示了58种代谢物的细胞含量发生了显著变化,包括许多源自糖酵解和三羧酸循环途径的中间体。这些代谢变化与更大的迁移潜力相关。与正常组织相比,结肠肿瘤中UGT1A_i2 mRNA的下调支持了我们观察结果的潜在相关性。因此,可变UGT1A变体可能是参与癌症生物学的代谢途径扩展纲要的一部分,直接促成结肠癌细胞的致癌表型。研究结果揭示了UGT功能与其转移酶活性不同的新方面。