Nolan Bridget E, Levenson Emily, Chen Brian Y
Department of Computer Science and Engineering, Lehigh University , Bethlehem, Pennsylvania.
J Comput Biol. 2017 Jan;24(1):68-78. doi: 10.1089/cmb.2016.0162.
This article examines three techniques for rapidly assessing the electrostatic contribution of individual amino acids to the stability of protein-protein complexes. Whereas the energetic minimization of modeled oligomers may yield more accurate complexes, we examined the possibility that simple modeling may be sufficient to identify amino acids that add to or detract from electrostatic complementarity. The three methods evaluated were (a) the elimination of entire side chains (e.g., glycine scanning), (b) the elimination of the electrostatic contribution from the atoms of a side chain, called nullification, and (c) side chain structure prediction using SCWRL4. These techniques generate models in seconds, enabling large-scale mutational scanning. We evaluated these techniques on the SMAD2/SMAD4 heterotrimer, whose formation plays a crucial role in antitumor pathways. Many studies have documented the clinical and structural effect of specific mutations on trimer formation. Our results describe how glycine scanning yields more specific predictions, although nullification may be more sensitive, and how side chain structure prediction enables the identification of uncharged-to-charge mutations.
本文研究了三种用于快速评估单个氨基酸对蛋白质-蛋白质复合物稳定性的静电贡献的技术。虽然对建模的寡聚体进行能量最小化可能会产生更精确的复合物,但我们研究了简单建模是否足以识别增加或降低静电互补性的氨基酸的可能性。评估的三种方法是:(a) 去除整个侧链(例如,甘氨酸扫描);(b) 去除侧链原子的静电贡献,称为无效化;(c) 使用SCWRL4进行侧链结构预测。这些技术能在数秒内生成模型,从而实现大规模突变扫描。我们在SMAD2/SMAD4异源三聚体上评估了这些技术,该三聚体的形成在抗肿瘤途径中起着关键作用。许多研究记录了特定突变对三聚体形成的临床和结构影响。我们的结果描述了甘氨酸扫描如何产生更具体的预测,尽管无效化可能更敏感,以及侧链结构预测如何能够识别不带电荷到带电荷的突变。