Schomburg Karen T, Nittinger Eva, Meyder Agnes, Bietz Stefan, Schneider Nadine, Lange Gudrun, Klein Robert, Rarey Matthias
Universität Hamburg, ZBH - Center for Bioinformatics, Bundestrasse 43, Hamburg, 20146, Germany.
Bayer CropScience AG, Industriepark Hoechst, G836, Frankfurt am Main, 65926, Germany.
Proteins. 2017 Aug;85(8):1550-1566. doi: 10.1002/prot.25315. Epub 2017 May 26.
Reliable computational prediction of protein side chain conformations and the energetic impact of amino acid mutations are the key aspects for the optimization of biotechnologically relevant enzymatic reactions using structure-based design. By improving the protein stability, higher yields can be achieved. In addition, tuning the substrate selectivity of an enzymatic reaction by directed mutagenesis can lead to higher turnover rates. This work presents a novel approach to predict the conformation of a side chain mutation along with the energetic effect on the protein structure. The HYDE scoring concept applied here describes the molecular interactions primarily by evaluating the effect of dehydration and hydrogen bonding on molecular structures in aqueous solution. Here, we evaluate its capability of side-chain conformation prediction in classic remutation experiments. Furthermore, we present a new data set for evaluating "cross-mutations," a new experiment that resembles real-world application scenarios more closely. This data set consists of protein pairs with up to five point mutations. Thus, structural changes are attributed to point mutations only. In the cross-mutation experiment, the original protein structure is mutated with the aim to predict the structure of the side chain as in the paired mutated structure. The comparison of side chain conformation prediction ("remutation") showed that the performance of HYDE is qualitatively comparable to state-of-the art methods. The ability of HYDE to predict the energetic effect of a mutation is evaluated in the third experiment. Herein, the effect on protein stability is predicted correctly in 70% of the evaluated cases. Proteins 2017; 85:1550-1566. © 2017 Wiley Periodicals, Inc.
蛋白质侧链构象的可靠计算预测以及氨基酸突变对能量的影响,是利用基于结构的设计优化生物技术相关酶促反应的关键方面。通过提高蛋白质稳定性,可以实现更高的产量。此外,通过定向诱变调整酶促反应的底物选择性可导致更高的周转率。这项工作提出了一种新方法,用于预测侧链突变的构象以及对蛋白质结构的能量效应。这里应用的HYDE评分概念主要通过评估脱水和氢键对水溶液中分子结构的影响来描述分子间相互作用。在此,我们在经典的再突变实验中评估其预测侧链构象的能力。此外,我们提出了一个用于评估“交叉突变”的新数据集,这是一个更接近实际应用场景的新实验。该数据集由具有多达五个点突变的蛋白质对组成。因此,结构变化仅归因于点突变。在交叉突变实验中,对原始蛋白质结构进行突变,目的是像在配对的突变结构中那样预测侧链的结构。侧链构象预测(“再突变”)的比较表明,HYDE的性能在质量上与现有方法相当。在第三个实验中评估了HYDE预测突变能量效应的能力。在此,在70%的评估案例中正确预测了对蛋白质稳定性的影响。蛋白质2017;85:1550 - 1566。©2017威利期刊公司。