Suppr超能文献

论分析相似性评估中等效性接受标准的建立。

On the establishment of equivalence acceptance criterion in analytical similarity assessment.

作者信息

Wang Tongrong, Chow Shein-Chung

机构信息

a Department of Biostatistics and Bioinformatics , Duke University School of Medicine , Durham , North Carolina , USA.

出版信息

J Biopharm Stat. 2017;27(2):206-212. doi: 10.1080/10543406.2016.1265539. Epub 2017 Jan 4.

Abstract

For the assessment of biosimilarity of biosimilar products, the United States (US) Food and Drug Administration (FDA) proposed a stepwise approach for providing the totality-of-the-evidence of similarity between a proposed biosimilar product and a US-licensed (reference) product. The stepwise approach starts with the assessment of critical quality attributes (CQAs) that are relevant to clinical outcomes in structural and functional characterization in the manufacturing process of the proposed biosimilar product. FDA suggests that these critical quality relevant attributes be identified and classified into three tiers depending on their criticality or risk ranking. To assist the sponsors, FDA also suggests some statistical approaches for the assessment of analytical similarity for CQAs from different tiers, namely equivalence test for Tier 1, quality range approach for Tier 2, and descriptive raw data and graphical comparison for Tier 3. Analytical similarity assessment for CQAs in Tier 1 is performed based on the equivalence acceptance criterion (EAC), which depends upon the estimate of variability of the reference product. The FDA's recommended approach often underestimates the variability of the reference product because it does not take the worst possible lots into consideration. In this article, we examine the statistical properties of the FDA's recommended approach and proposed alternative methods in establishing an alternative approach under the scenario where multiple samples drew from each lot.

摘要

对于生物类似药产品的生物相似性评估,美国食品药品监督管理局(FDA)提出了一种逐步方法,以提供拟议的生物类似药产品与美国已获许可的(参比)产品之间相似性的总体证据。该逐步方法始于对拟议生物类似药产品生产过程中与临床结果相关的关键质量属性(CQA)进行结构和功能表征评估。FDA建议识别这些关键质量相关属性,并根据其关键性或风险等级分为三个层级。为协助申办者,FDA还针对不同层级的CQA评估分析相似性提出了一些统计方法,即一级的等效性检验、二级的质量范围方法以及三级的描述性原始数据和图形比较。一级CQA的分析相似性评估基于等效性接受标准(EAC)进行,该标准取决于参比产品变异性的估计。FDA推荐的方法往往低估了参比产品的变异性,因为它没有考虑到可能最差的批次。在本文中,我们研究了FDA推荐方法的统计特性,并提出了在从每个批次抽取多个样本的情况下建立替代方法的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验