Kapur Anshika, Aldeek Fadi, Ji Xin, Safi Malak, Wang Wentao, Del Cid Ada, Steinbock Oliver, Mattoussi Hedi
Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States.
Bioconjug Chem. 2017 Feb 15;28(2):678-687. doi: 10.1021/acs.bioconjchem.7b00006. Epub 2017 Jan 26.
The ability of Au and other metal nanostructures to strongly quench the fluorescence of proximal fluorophores (dyes and fluorescent proteins) has made AuNP conjugates attractive for use as platforms for sensor development based on energy transfer interactions. In this study, we first characterize the energy transfer quenching of mCherry fluorescent proteins immobilized on AuNPs via metal-histidine coordination, where parameters such as NP size and number of attached proteins are varied. Using steady-state and time-resolved fluorescence measurements, we recorded very high mCherry quenching, with efficiency reaching ∼95-97%, independent of the NP size or number of bound fluorophores (i.e., conjugate valence). We further exploited these findings to develop a solution phase sensing platform targeting thiolate compounds. Energy transfer (ET) was employed as a transduction mechanism to monitor the competitive displacement of mCherry from the Au surface upon the introduction of varying amounts of thiolates with different size and coordination numbers. Our results show that the competitive displacement of mCherry depends on the thiolate concentration, time of reaction, and type of thiol derivatives used. Further analysis of the PL recovery data provides a measure for the equilibrium dissociation constant (K) for these compounds. These findings combined indicate that the AuNP-fluorescent protein conjugates may offer a potentially useful platform for thiol sensing both in solution and in cell cultures.
金及其他金属纳米结构能够强烈淬灭近端荧光团(染料和荧光蛋白)的荧光,这使得金纳米颗粒(AuNP)共轭物作为基于能量转移相互作用的传感器开发平台具有吸引力。在本研究中,我们首先通过金属 - 组氨酸配位来表征固定在金纳米颗粒上的mCherry荧光蛋白的能量转移淬灭,其中纳米颗粒大小和附着蛋白数量等参数会发生变化。通过稳态和时间分辨荧光测量,我们记录到了非常高的mCherry淬灭效率,达到约95 - 97%,且与纳米颗粒大小或结合荧光团数量(即共轭物化合价)无关。我们进一步利用这些发现开发了一种针对硫醇盐化合物的溶液相传感平台。能量转移(ET)被用作一种转导机制,以监测在引入不同大小和配位数的硫醇盐时,mCherry从金表面的竞争性取代。我们的结果表明,mCherry的竞争性取代取决于硫醇盐浓度、反应时间以及所用硫醇衍生物的类型。对光致发光恢复数据的进一步分析提供了这些化合物平衡解离常数(K)的一种度量。这些发现共同表明,金纳米颗粒 - 荧光蛋白共轭物可能为溶液和细胞培养中的硫醇传感提供一个潜在有用的平台。