Perera Y Randika, Hill Rebecca A, Fitzkee Nicholas C
Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
Isr J Chem. 2019 Nov;59(11-12):962-979. doi: 10.1002/ijch.201900080. Epub 2019 Sep 19.
In the last decade, nanoparticles (NPs) have become a key tool in medicine and biotechnology as drug delivery systems, biosensors and diagnostic devices. The composition and surface chemistry of NPs vary based on the materials used: typically organic polymers, inorganic materials, or lipids. Nanoparticle classes can be further divided into sub-categories depending on the surface modification and functionalization. These surface properties matter when NPs are introduced into a physiological environment, as they will influence how nucleic acids, lipids, and proteins will interact with the NP surface. While small-molecule interactions are easily probed using NMR spectroscopy, studying protein-NP interactions using NMR introduces several challenges. For example, globular proteins may have a perturbed conformation when attached to a foreign surface, and the size of NP-protein conjugates can lead to excessive line broadening. Many of these challenges have been addressed, and NMR spectroscopy is becoming a mature technique for analysis of NP binding behavior. It is therefore not surprising that NMR has been applied to NP systems and has been used to study biomolecules on NP surfaces. Important considerations include corona composition, protein behavior, and ligand architecture. These features are difficult to resolve using classical surface and material characterization strategies, and NMR provides a complementary avenue of characterization. In this review, we examine how solution NMR can be combined with other analytical techniques to investigate protein behavior on NP surfaces.
在过去十年中,纳米颗粒(NPs)已成为医学和生物技术领域的关键工具,可用作药物递送系统、生物传感器和诊断设备。纳米颗粒的组成和表面化学性质因所用材料而异:通常为有机聚合物、无机材料或脂质。根据表面修饰和功能化情况,纳米颗粒类别可进一步细分为子类别。当纳米颗粒被引入生理环境时,这些表面性质至关重要,因为它们会影响核酸、脂质和蛋白质与纳米颗粒表面的相互作用方式。虽然小分子相互作用很容易通过核磁共振光谱法进行探测,但使用核磁共振研究蛋白质与纳米颗粒的相互作用会带来一些挑战。例如,球状蛋白质附着在异物表面时可能会有构象扰动,而且纳米颗粒 - 蛋白质缀合物的大小可能导致谱线过度展宽。其中许多挑战已得到解决,核磁共振光谱法正成为分析纳米颗粒结合行为的成熟技术。因此,核磁共振已应用于纳米颗粒系统并用于研究纳米颗粒表面的生物分子也就不足为奇了。重要的考虑因素包括冠层组成、蛋白质行为和配体结构。这些特征难以用传统的表面和材料表征策略来解析,而核磁共振提供了一种互补的表征途径。在这篇综述中,我们研究了溶液核磁共振如何与其他分析技术相结合,以研究蛋白质在纳米颗粒表面的行为。