Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P.R. China.
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, P.R. China.
Sci Rep. 2017 Jan 5;7:40044. doi: 10.1038/srep40044.
Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.
具有高密度异相界面的材料能够吸收和消除辐射诱导的点缺陷,从而表现出优异的抗辐射能力。在本文中,我们通过向 ZrN/TaN 多层纳米薄膜中注入氦原子来研究点缺陷和异相界面的相互作用行为。结果发现,ZrN/TaN 界面两侧的点缺陷-界面相互作用是不对称的,这可能是由于 ZrN 和 TaN 的空位形成能不同所致。氦泡可以通过异相界面从 ZrN 层迁移到 TaN 层,从而使 ZrN 层的结晶度更好,TaN 层完全非晶化。这些发现为异相界面附近点缺陷的基本行为提供了一些线索,使我们重新审视先进抗辐射材料的设计规则。