Suppr超能文献

基于蝙蝠启发式算法的医学网络信息检索查询扩展

Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

作者信息

Khennak Ilyes, Drias Habiba

机构信息

Laboratory for Research in Artificial Intelligence, Computer Science Department, USTHB, BP 32 El Alia 16111, Bab Ezzouar, Algiers, Algeria.

出版信息

J Med Syst. 2017 Feb;41(2):34. doi: 10.1007/s10916-016-0668-1. Epub 2017 Jan 4.

Abstract

With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

摘要

随着网络上可用医学数据量的不断增加,寻找健康信息已成为互联网上搜索最为广泛的主题之一。现在,来自不同背景的患者和人们正在使用网络搜索引擎获取医学信息,包括有关特定疾病、医学治疗或专业建议的信息。然而,由于缺乏医学知识,许多外行人难以形成恰当的查询来清晰表达他们的问题,这使得他们的搜索查询因使用不明确的关键词而不够精确。使用这些模糊不清的查询来描述患者的需求,导致网络搜索引擎无法检索到准确且相关的信息。克服这一缺点最自然且有前景的方法之一是查询扩展。本文提出了一种基于蝙蝠算法的原创方法,以提高医学领域查询扩展的检索效果。与现有文献不同,该方法使用蝙蝠算法在一组扩展查询候选中找到最佳扩展查询,同时保持较低的计算复杂度。此外,这种新方法允许凭经验确定扩展查询的长度。在线医学信息数据库MEDLINE上的数值结果表明,与基线相比,该方法更有效且高效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验