Suppr超能文献

用于自动聚类的聚类有效性指标:全面综述。

Cluster validity indices for automatic clustering: A comprehensive review.

作者信息

Ikotun Abiodun M, Habyarimana Faustin, Ezugwu Absalom E

机构信息

School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa.

Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520, North-West, South Africa.

出版信息

Heliyon. 2025 Jan 15;11(2):e41953. doi: 10.1016/j.heliyon.2025.e41953. eCollection 2025 Jan 30.

Abstract

The Cluster Validity Index is an integral part of clustering algorithms. It evaluates inter-cluster separation and intra-cluster cohesion of candidate clusters to determine the quality of potential solutions. Several cluster validity indices have been suggested for both classical clustering algorithms and automatic metaheuristic-based clustering algorithms. Different cluster validity indices exhibit different characteristics based on the mathematical models they employ in determining the values for the various cluster attributes. Metaheuristic-based automatic clustering algorithms use cluster validity index as a fitness function in its optimization procedure to evaluate the candidate cluster solution's quality. A systematic review of the cluster validity indices used as fitness functions in metaheuristic-based automatic clustering algorithms is presented in this study. Identifying, reporting, and analysing various cluster validity indices is important in classifying the best CVIs for optimum performance of a metaheuristic-based automatic clustering algorithm. This review also includes an experimental study on the performance of some common cluster validity indices on some synthetic datasets with varied characteristics as well as real-life datasets using the SOSK-means automatic clustering algorithm. This review aims to assist researchers in identifying and selecting the most suitable cluster validity indices (CVIs) for their specific application areas.

摘要

聚类有效性指标是聚类算法的一个组成部分。它评估候选聚类的类间分离度和类内凝聚度,以确定潜在解决方案的质量。针对经典聚类算法和基于自动元启发式的聚类算法,已经提出了几种聚类有效性指标。不同的聚类有效性指标基于其在确定各种聚类属性值时所采用的数学模型,表现出不同的特征。基于元启发式的自动聚类算法在其优化过程中使用聚类有效性指标作为适应度函数,以评估候选聚类解决方案的质量。本研究对在基于元启发式的自动聚类算法中用作适应度函数的聚类有效性指标进行了系统综述。识别、报告和分析各种聚类有效性指标对于为基于元启发式的自动聚类算法的最佳性能分类最佳聚类有效性指标很重要。本综述还包括一项实验研究,该研究使用SOSK-均值自动聚类算法,对一些具有不同特征的合成数据集以及现实生活数据集上的一些常见聚类有效性指标的性能进行了研究。本综述旨在帮助研究人员为其特定应用领域识别和选择最合适的聚类有效性指标(CVI)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f29/11787482/a369729fb8b2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验