Ikotun Abiodun M, Habyarimana Faustin, Ezugwu Absalom E
School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa.
Unit for Data Science and Computing, North-West University, 11 Hoffman Street, Potchefstroom, 2520, North-West, South Africa.
Heliyon. 2025 Jan 15;11(2):e41953. doi: 10.1016/j.heliyon.2025.e41953. eCollection 2025 Jan 30.
The Cluster Validity Index is an integral part of clustering algorithms. It evaluates inter-cluster separation and intra-cluster cohesion of candidate clusters to determine the quality of potential solutions. Several cluster validity indices have been suggested for both classical clustering algorithms and automatic metaheuristic-based clustering algorithms. Different cluster validity indices exhibit different characteristics based on the mathematical models they employ in determining the values for the various cluster attributes. Metaheuristic-based automatic clustering algorithms use cluster validity index as a fitness function in its optimization procedure to evaluate the candidate cluster solution's quality. A systematic review of the cluster validity indices used as fitness functions in metaheuristic-based automatic clustering algorithms is presented in this study. Identifying, reporting, and analysing various cluster validity indices is important in classifying the best CVIs for optimum performance of a metaheuristic-based automatic clustering algorithm. This review also includes an experimental study on the performance of some common cluster validity indices on some synthetic datasets with varied characteristics as well as real-life datasets using the SOSK-means automatic clustering algorithm. This review aims to assist researchers in identifying and selecting the most suitable cluster validity indices (CVIs) for their specific application areas.
聚类有效性指标是聚类算法的一个组成部分。它评估候选聚类的类间分离度和类内凝聚度,以确定潜在解决方案的质量。针对经典聚类算法和基于自动元启发式的聚类算法,已经提出了几种聚类有效性指标。不同的聚类有效性指标基于其在确定各种聚类属性值时所采用的数学模型,表现出不同的特征。基于元启发式的自动聚类算法在其优化过程中使用聚类有效性指标作为适应度函数,以评估候选聚类解决方案的质量。本研究对在基于元启发式的自动聚类算法中用作适应度函数的聚类有效性指标进行了系统综述。识别、报告和分析各种聚类有效性指标对于为基于元启发式的自动聚类算法的最佳性能分类最佳聚类有效性指标很重要。本综述还包括一项实验研究,该研究使用SOSK-均值自动聚类算法,对一些具有不同特征的合成数据集以及现实生活数据集上的一些常见聚类有效性指标的性能进行了研究。本综述旨在帮助研究人员为其特定应用领域识别和选择最合适的聚类有效性指标(CVI)。