Suppr超能文献

在微流控显微镜中使用深度学习网络进行细胞病理学图像分析。

Cytopathological image analysis using deep-learning networks in microfluidic microscopy.

作者信息

Gopakumar G, Hari Babu K, Mishra Deepak, Gorthi Sai Siva, Sai Subrahmanyam Gorthi R K

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2017 Jan 1;34(1):111-121. doi: 10.1364/JOSAA.34.000111.

Abstract

Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.

摘要

细胞病理学检测是包括癌症在内的疾病诊断中最关键的步骤之一。然而,这项任务既费力又需要技巧。相关的高成本和低通量引发了人们对自动化检测过程的浓厚兴趣。人们设计了几种神经网络架构,以便为机器提供人类专业知识。在本文中,我们通过对三种重要的未标记、未染色白血病细胞系(K562、MOLT和HL60)进行分类,探索并提出了使用深度学习网络进行细胞病理学分析的可行性。分类中使用的细胞图像是通过一种低成本、高通量的细胞成像技术——基于微流控的成像流式细胞术采集的。我们证明,在没有任何传统的精细分割以及明确的特征提取的情况下,所提出的深度学习算法能够有效地对粗略定位的细胞系进行分类。我们表明,所设计的深度信念网络以及深度预训练的卷积神经网络优于传统使用的决策系统,并且在医学领域具有重要意义,因为在该领域用于训练的标记数据有限。我们希望我们的工作能够推动开发一种具有临床意义的基于高通量微流控显微镜的疾病筛查/分诊工具,特别是在资源有限的环境中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验