Sean David, Slater Gary W
Department of Physics, University of Ottawa, Ottawa, ON, Canada.
Electrophoresis. 2017 Mar;38(5):653-658. doi: 10.1002/elps.201600438.
We investigate the dynamics of driving a polyelectrolyte such as DNA through a nanopore and into a cross-linked gel. Placing the gel on the trans-side of the nanopore can increase the translocation time while not negatively affecting the capture rates. Thus, this setup combines the mechanics of gel electrophoresis with nanopore translocation. However, contrary to typical gel electrophoresis scenarios, the effect of the field is localized in the immediate vicinity of the nanopore and becomes negligible inside the gel matrix. Thus, we investigate the process by which a semiflexible polymer can be pushed into a gel matrix via a localized field and we describe how the dynamics of gel penetration depends upon the field intensity, polymer stiffness, and gel pore size. Our simulation results show that a semiflexible polymer enters the gel region with two distinct mechanisms depending upon the ratio between the bending length scale and the gel pore size. In both regimes, the gel fibers cause a net increase in the mean translocation time. Interestingly, the translocation rate is found to be constant (a potentially useful feature for many applications) during the predominant part of the translocation process when the polymer is stiff over a length scale comparable to the gel pore size.
我们研究了将诸如DNA之类的聚电解质驱动通过纳米孔并进入交联凝胶的动力学过程。将凝胶置于纳米孔的另一侧可以增加转运时间,同时不会对捕获率产生负面影响。因此,这种设置将凝胶电泳的机制与纳米孔转运结合了起来。然而,与典型的凝胶电泳情况相反,电场的作用局限于纳米孔的紧邻区域,在凝胶基质内部则可忽略不计。因此,我们研究了半柔性聚合物如何通过局部电场被推入凝胶基质的过程,并描述了凝胶渗透动力学如何取决于电场强度、聚合物刚度和凝胶孔径。我们的模拟结果表明,根据弯曲长度尺度与凝胶孔径之间的比例,半柔性聚合物通过两种不同机制进入凝胶区域。在这两种情况下,凝胶纤维都会导致平均转运时间净增加。有趣的是,当聚合物在与凝胶孔径相当的长度尺度上呈刚性时,在转运过程的主要部分,转运速率被发现是恒定的(这对许多应用来说可能是一个有用的特性)。