Suppr超能文献

聚合物链在静态多孔环境中的异常堆积和动力学。

Anomalous packing and dynamics of a polymer chain confined in a static porous environment.

机构信息

Department of Polymer Science and Engineering, University of Massachusetts-Amherst, Amherst, Massachusetts 01002, USA.

出版信息

J Chem Phys. 2018 Nov 7;149(17):174902. doi: 10.1063/1.5043629.

Abstract

Polymers in confined porous environments are ubiquitous throughout biology, physics, materials science, and engineering. Several experiments have suggested that in some porous environments, chain dynamics can become extremely slow. While phenomenological explanations exist, the exact mechanisms for these slow dynamics have not been fully characterized. In this work, we initiate a joint simulation-theory study to investigate chain packing and dynamics in a static porous environment. The main theoretical concept is the free energy of the chain partitioning into several chambers of the porous environment. Both the theoretical results and Langevin dynamics simulations show that chain packing in each of the chambers is predominantly independent of chain length; it is determined by the maximal packing of segments in each chamber. Dynamically, short chains (compared to the chamber size) become trapped in a single chamber and dynamics become extremely slow, characteristic of an Ogston sieving-like behavior. For longer chains, on the other hand, a hierarchy of slow dynamics is observed due to entropic trapping, characterized by sub-diffusive behavior and a temporary plateau in the mean square displacement. Due to the slow nature of the dynamics, the inevitable long-time diffusive behavior of the chains is not captured by our simulations. Theoretically, the slow dynamics are understood in terms of a free energy barrier required to thread the chain from one chamber to the next. There is overall qualitative and quantitative agreement between simulations and theory. This work provides foundations for a better understanding of how chain dynamics are affected by porous environments.

摘要

在生物、物理、材料科学和工程学中,聚合物在受限的多孔环境中无处不在。一些实验表明,在某些多孔环境中,链动力学可能变得非常缓慢。虽然存在唯象解释,但这些缓慢动力学的确切机制尚未得到充分描述。在这项工作中,我们开始进行联合模拟-理论研究,以研究静态多孔环境中的链堆积和动力学。主要的理论概念是链分割成多孔环境的几个腔室的自由能。理论结果和 Langevin动力学模拟都表明,每个腔室中的链堆积主要与链长无关;它由每个腔室中片段的最大堆积决定。在动力学方面,短链(与腔室尺寸相比)被困在单个腔室中,动力学变得非常缓慢,表现出类似于 Ogston 筛分的行为。另一方面,对于较长的链,由于熵捕获,观察到一种层次结构的缓慢动力学,其特征是亚扩散行为和均方位移的临时平台。由于动力学的缓慢性质,我们的模拟无法捕捉到链不可避免的长时间扩散行为。从理论上讲,缓慢动力学可以理解为从一个腔室到另一个腔室穿链所需的自由能势垒。模拟和理论之间存在总体上的定性和定量一致性。这项工作为更好地理解链动力学如何受到多孔环境的影响提供了基础。

相似文献

1
Anomalous packing and dynamics of a polymer chain confined in a static porous environment.
J Chem Phys. 2018 Nov 7;149(17):174902. doi: 10.1063/1.5043629.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Conformation and dynamics of model polymer in connected chamber-pore system.
J Chem Phys. 2009 Dec 7;131(21):214903. doi: 10.1063/1.3267487.
4
Entropic forces of single-chain confinement in spherical cavities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041805. doi: 10.1103/PhysRevE.82.041805. Epub 2010 Oct 22.
5
Dynamics of polymer chains confined to a periodic cylinder: molecular dynamics simulation Lifson-Jackson formula.
Phys Chem Chem Phys. 2023 Sep 20;25(36):24395-24405. doi: 10.1039/d3cp02276e.
6
Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.
J Colloid Interface Sci. 2016 Nov 1;481:181-93. doi: 10.1016/j.jcis.2016.07.019. Epub 2016 Jul 15.
8
Facilitated dynamics of an active polymer in 2D crowded environments with obstacles.
Soft Matter. 2022 Dec 14;18(48):9263-9272. doi: 10.1039/d2sm00974a.
9
Polymer translocation through a nanopore: a showcase of anomalous diffusion.
Ann N Y Acad Sci. 2009 Apr;1161:95-104. doi: 10.1111/j.1749-6632.2008.04068.x.
10
Hopping Behavior Mediates the Anomalous Confined Diffusion of Nanoparticles in Porous Hydrogels.
J Phys Chem Lett. 2022 Nov 17;13(45):10612-10620. doi: 10.1021/acs.jpclett.2c02733. Epub 2022 Nov 9.

本文引用的文献

1
Topologically frustrated dynamics of crowded charged macromolecules in charged hydrogels.
Nat Commun. 2018 Jun 8;9(1):2248. doi: 10.1038/s41467-018-04661-3.
2
: A Perspective on Polyelectrolyte Solutions.
Macromolecules. 2017 Dec 26;50(24):9528-9560. doi: 10.1021/acs.macromol.7b01929. Epub 2017 Dec 14.
3
Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries.
Small. 2018 Mar;14(11):e1703001. doi: 10.1002/smll.201703001. Epub 2017 Dec 27.
4
Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore.
Macromolecules. 2017 Mar 28;50(6):2477-2483. doi: 10.1021/acs.macromol.6b02571. Epub 2017 Mar 9.
5
Langevin dynamcis simulations of driven polymer translocation into a cross-linked gel.
Electrophoresis. 2017 Mar;38(5):653-658. doi: 10.1002/elps.201600438.
6
Waves of DNA: Propagating excitations in extended nanoconfined polymers.
Phys Rev E. 2016 Oct;94(4-1):042603. doi: 10.1103/PhysRevE.94.042603. Epub 2016 Oct 17.
7
Conformation and dynamics of model polymer in connected chamber-pore system.
J Chem Phys. 2009 Dec 7;131(21):214903. doi: 10.1063/1.3267487.
8
Origin of translocation barriers for polyelectrolyte chains.
J Chem Phys. 2009 Nov 21;131(19):194903. doi: 10.1063/1.3264632.
9
Electrophoretic separation of DNA in gels and nanostructures.
Lab Chip. 2009 Sep 7;9(17):2508-23. doi: 10.1039/b905448k. Epub 2009 Jun 11.
10
Modeling the separation of macromolecules: a review of current computer simulation methods.
Electrophoresis. 2009 Mar;30(5):792-818. doi: 10.1002/elps.200800673.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验