Geraci Andrew A, Derevianko Andrei
Department of Physics, University of Nevada, Reno, Nevada 89557, USA.
Phys Rev Lett. 2016 Dec 23;117(26):261301. doi: 10.1103/PhysRevLett.117.261301. Epub 2016 Dec 20.
We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.
我们讨论了使用原子干涉测量法作为一种工具来搜寻由处于维里化状态的超轻场(VULF)构成的暗物质(DM)。先前利用加速度计探测VULF暗物质的工作考虑了等效原理违反效应的可能性,即暗物质场中的梯度可以直接在不同成分的介质之间产生相对加速度。在原子干涉仪中,我们发现,由于在整个干涉仪序列的光脉冲之间可能发生的原子静止质量变化以及地球引力场的变化,由暗物质场的相干振荡引起的随时间变化的相位信号也可能出现。我们估计,由于这些新效应,可以探测到VULF暗物质耦合的几个未探索数量级的相空间。