Perumbil Manju, Blacker Matthew J, Szigeti Stuart S, Haine Simon A
ITEP, Department of Education, Central University of Kerala, Kasaragod, Kerala, India.
Department of Quantum Science and Technology, The Australian National University, Research School of Physics, Canberra, ACT, Australia.
NPJ Microgravity. 2025 Jul 7;11(1):37. doi: 10.1038/s41526-025-00499-4.
We investigate the use of an atomic Fabry-Perot interferometer (FPI) with a pulsed non-interacting Bose-Einstein condensate (BEC) source as a space-based acceleration sensor. We derive an analytic approximation for the device's transmission under a uniform acceleration, which we use to compute the device's attainable acceleration sensitivity using the classical Fisher information. In the ideal case of a high-finesse FPI and an infinitely narrow momentum width atomic source, we find that when the device length is limited, the atomic FPI can achieve greater acceleration sensitivity than a Mach-Zender (MZ) interferometer of equivalent device length. Under the more realistic case of a finite momentum width source, we identify the ideal cavity length for the best sensitivity. Although the MZ interferometer now offers enhanced sensitivity within currently achievable parameter regimes, our analysis demonstrates that the atomic FPI holds potential as a promising future alternative if narrow momentum width atomic sources can be engineered.
我们研究了将带有脉冲非相互作用玻色 - 爱因斯坦凝聚体(BEC)源的原子法布里 - 珀罗干涉仪(FPI)用作天基加速度传感器的情况。我们推导了在均匀加速度下该装置透射率的解析近似值,并用它通过经典费舍尔信息来计算该装置可达到的加速度灵敏度。在高精细度FPI和无限窄动量宽度原子源的理想情况下,我们发现当装置长度有限时,原子FPI能比等效装置长度的马赫 - 曾德尔(MZ)干涉仪实现更高的加速度灵敏度。在源的动量宽度有限这种更现实的情况下,我们确定了实现最佳灵敏度的理想腔长。尽管MZ干涉仪在当前可实现的参数范围内现在具有更高的灵敏度,但我们的分析表明,如果能够设计出窄动量宽度的原子源,原子FPI作为未来有前景的替代方案具有潜力。