Suppr超能文献

小儿神经外科手术的围手术期结局:国家外科质量改进计划-儿科分析

Perioperative outcomes for pediatric neurosurgical procedures: analysis of the National Surgical Quality Improvement Program-Pediatrics.

作者信息

Kuo Benjamin J, Vissoci Joao Ricardo N, Egger Joseph R, Smith Emily R, Grant Gerald A, Haglund Michael M, Rice Henry E

机构信息

Division of Global Neurosurgery and Neuroscience and.

Global Health Institute, Duke University, Durham, North Carolina.

出版信息

J Neurosurg Pediatr. 2017 Mar;19(3):361-371. doi: 10.3171/2016.10.PEDS16414. Epub 2017 Jan 6.

Abstract

OBJECTIVE Existing studies have shown a high overall rate of adverse events (AEs) following pediatric neurosurgical procedures. However, little is known regarding the morbidity of specific procedures or the association with risk factors to help guide quality improvement (QI) initiatives. The goal of this study was to describe the 30-day mortality and AE rates for pediatric neurosurgical procedures by using the American College of Surgeons (ACS) National Surgical Quality Improvement Program-Pediatrics (NSQIP-Peds) database platform. METHODS Data on 9996 pediatric neurosurgical patients were acquired from the 2012-2014 NSQIP-Peds participant user file. Neurosurgical cases were analyzed by the NSQIP-Peds targeted procedure categories, including craniotomy/craniectomy, defect repair, laminectomy, shunts, and implants. The primary outcome measure was 30-day mortality, with secondary outcomes including individual AEs, composite morbidity (all AEs excluding mortality and unplanned reoperation), surgical-site infection, and unplanned reoperation. Univariate analysis was performed between individual AEs and patient characteristics using Fischer's exact test. Associations between individual AEs and continuous variables (duration from admission to operation, work relative value unit, and operation time) were examined using the Student t-test. Patient characteristics and continuous variables associated with any AE by univariate analysis were used to develop category-specific multivariable models through backward stepwise logistic regression. RESULTS The authors analyzed 3383 craniotomy/craniectomy, 242 defect repair, 1811 laminectomy, and 4560 shunt and implant cases and found a composite overall morbidity of 30.2%, 38.8%, 10.2%, and 10.7%, respectively. Unplanned reoperation rates were highest for defect repair (29.8%). The mortality rate ranged from 0.1% to 1.2%. Preoperative ventilator dependence was a significant predictor of any AE for all procedure groups, whereas admission from outside hospital transfer was a significant predictor of any AE for all procedure groups except craniotomy/craniectomy. CONCLUSIONS This analysis of NSQIP-Peds, a large risk-adjusted national data set, confirms low perioperative mortality but high morbidity for pediatric neurosurgical procedures. These data provide a baseline understanding of current expected clinical outcomes for pediatric neurosurgical procedures, identify the need for collecting neurosurgery-specific risk factors and complications, and should support targeted QI programs and clinical management interventions to improve care of children.

摘要

目的 现有研究表明,小儿神经外科手术后不良事件(AE)的总体发生率较高。然而,对于特定手术的发病率或与风险因素的关联了解甚少,难以指导质量改进(QI)举措。本研究的目的是利用美国外科医师学会(ACS)国家外科质量改进计划 - 儿科(NSQIP - Peds)数据库平台,描述小儿神经外科手术的30天死亡率和AE发生率。方法 从2012 - 2014年NSQIP - Peds参与者用户文件中获取9996例小儿神经外科患者的数据。神经外科病例按NSQIP - Peds的目标手术类别进行分析,包括开颅术/颅骨切除术、缺损修复、椎板切除术、分流术和植入术。主要结局指标是30天死亡率,次要结局包括个体AE、综合发病率(所有AE,不包括死亡率和计划外再次手术)、手术部位感染和计划外再次手术。使用Fisher精确检验对个体AE与患者特征进行单因素分析。使用Student t检验检查个体AE与连续变量(入院至手术的持续时间、工作相对价值单位和手术时间)之间的关联。通过单因素分析与任何AE相关的患者特征和连续变量用于通过向后逐步逻辑回归建立特定类别的多变量模型。结果 作者分析了3383例开颅术/颅骨切除术、242例缺损修复、1811例椎板切除术以及4560例分流术和植入术病例,发现综合总体发病率分别为30.2%、38.8%、10.2%和10.7%。缺损修复的计划外再次手术率最高(29.8%)。死亡率在0.1%至1.2%之间。术前呼吸机依赖是所有手术组任何AE的重要预测因素,而从外部医院转院入院是除开颅术/颅骨切除术外所有手术组任何AE的重要预测因素。结论 对NSQIP - Peds这一经过风险调整的大型国家数据集的分析证实,小儿神经外科手术围手术期死亡率低但发病率高。这些数据提供了对小儿神经外科手术当前预期临床结局的基线理解,确定了收集神经外科特定风险因素和并发症的必要性,并应支持有针对性的QI计划和临床管理干预措施,以改善儿童护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验